Problem Description:
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Input:
n (0 < n < 20).
Output:
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input:
6
8
Sample Output:
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
解题思路:
给你一个数n,输出所有的相邻两数之和为素数(首尾亦满足该条件)的1到n的排列,只输出以1开头的排列 。
程序代码:
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<math.h> #define N 100001 int num[N],vis[N],n; int prime(int x)//素数判定 { if(x<2) return 0; for(int i=2;i<=sqrt(x);i++) if(x%i==0) return 0; return 1; } void dfs(int a) { if(a==n&&prime(num[a-1]+1))//这个数达到n,并且满足最后一个数和第一个数的和仍是素数 { printf("1"); for(int i=1;i<n;i++) printf(" %d",num[i]);//依次输出,保证最后一个数的后面没有空格 printf("\n"); } if(a==n)//返回 return ; for(int i=2;i<=n;i++) { if(prime(num[a-1]+i)&&!vis[i])//从2开始向后搜索,且这个数没有标记过 { num[a]=i;//赋值给对应的数 vis[i]=1;//标记这个数 dfs(a+1);//搜索下一个 vis[i]=0;//取消标记 } } } int main() { int ans=0; while(~scanf("%d",&n)) { memset(vis,0,sizeof(vis)); num[0]=1;//第一个数为1 vis[1]=1;//将1标记,已经出现过 printf("Case %d:\n",++ans); dfs(1); printf("\n"); } return 0; }