R绘图 | 一幅小提琴图的美化之旅

简介: R绘图 | 一幅小提琴图的美化之旅

绘制


# 加载包
library(tidyverse)
library(ggplot2)
# 示例数据准备
niwot_plant_exp <- read.csv("niwot_plant_exp.csv")
# Calculate species richness per plot per year
niwot_richness <- niwot_plant_exp %>% 
  group_by(plot_num, year) %>%
  mutate(richness = length(unique(USDA_Scientific_Name))) %>% 
  ungroup()
distributions1 <- ggplot(niwot_richness, aes(x = fert, y = richness)) +
    geom_violin()
distributions1

image.png

distributions1

图很丑,但这是对数据分布的有效观察。我们可以添加一些颜色,也可以添加我们的自定义主题。

theme_niwot <- function(){
  theme_bw() +
    theme(text = element_text(family = "Helvetica Light"),
          axis.text = element_text(size = 16), 
          axis.title = element_text(size = 18),
          axis.line.x = element_line(color="black"), 
          axis.line.y = element_line(color="black"),
          panel.border = element_blank(),
          panel.grid.major.x = element_blank(),                                          
          panel.grid.minor.x = element_blank(),
          panel.grid.minor.y = element_blank(),
          panel.grid.major.y = element_blank(),  
          plot.margin = unit(c(1, 1, 1, 1), units = , "cm"),
          plot.title = element_text(size = 18, vjust = 1, hjust = 0),
          legend.text = element_text(size = 12),          
          legend.title = element_blank(),                              
          legend.position = c(0.95, 0.15), 
          legend.key = element_blank(),
          legend.background = element_rect(color = "black", 
                                           fill = "transparent", 
                                           size = 2, linetype = "blank"))
}
distributions2 <- ggplot(niwot_richness, aes(x = fert, y = richness)) +
  geom_violin(aes(fill = fert, colour = fert), alpha = 0.5) +
  # alpha控制不透明度
  theme_niwot()

distributions2

image.png

distributions2

看起来好多了,但对于读者来说,要找出每个类别的平均值仍然很难。这样我们就可以用箱形图把小提琴覆盖起来。

distributions3 <- ggplot(niwot_richness, aes(x = fert, y = richness)) +
  geom_violin(aes(fill = fert, colour = fert), alpha = 0.5) +
  geom_boxplot(aes(colour = fert), width = 0.2) + # 添加箱线图图层
  theme_niwot()

distributions3

image.png

distributions3

虽然箱线图在图上添加了更多的信息,但我们仍然不知道数据点的确切位置,小提琴的平滑函数有时会隐藏给定变量的真实值。不用箱线图,我们可以加上实际数据点。

distributions4 <- ggplot(niwot_richness, aes(x = fert, y = richness)) +
  geom_violin(aes(fill = fert, colour = fert), alpha = 0.5) +
  geom_jitter(aes(colour = fert), position = position_jitter(0.1), # 添加散点
              alpha = 0.3) +
  theme_niwot()

distributions4

image.png

distributions4

可以看到,虽然能看到真实的数据,但当这些点放在小提琴上时,很难区分。这就到了雨云图发挥作用的时候,它结合了真实数据点和箱线图的分布。

# This code loads the function in the working environment
source("geom_flat_violin.R") 
distributions5 <- 
  ggplot(data = niwot_richness, 
         aes(x = reorder(fert, desc(richness)), y = richness, fill = fert)) +
  # 半小提琴
  geom_flat_violin(position = position_nudge(x = 0.2, y = 0), alpha = 0.8) +
  # 散点
  geom_point(aes(y = richness, color = fert), 
             position = position_jitter(width = 0.15), size = 1, alpha = 0.1) +
  # 箱线
  geom_boxplot(width = 0.2, outlier.shape = NA, alpha = 0.8) +
  # \n 添加一个新行,在轴和轴标题之间创建一些空间
  labs(y = "Species richness\n", x = NULL) +
  # 删除图例
  guides(fill = FALSE, color = FALSE) +
  # 设置 y 轴范围
  scale_y_continuous(limits = c(0, 30)) +
  # 颜色
  scale_fill_manual(values = c("#5A4A6F", "#E47250",  "#EBB261", "#9D5A6C")) +
  scale_colour_manual(values = c("#5A4A6F", "#E47250",  "#EBB261", "#9D5A6C")) +
  theme_niwot()
distributions5

image.png

distributions5

可以翻转x轴和y轴。

v

image.png

distributions6

美化之旅到此结束啦!


参考


Efficient and beautiful data visualisation (ourcodingclub.github.io)(https://ourcodingclub.github.io/tutorials/dataviz-beautification/#distributions)


相关文章
|
存储 缓存 网络协议
DPDK入门(环境搭建以及小demo)
DPDK入门(环境搭建以及小demo)
1485 0
社区供稿 | 魔搭Agent创意挑战赛作品体验感受
近期在闲逛知乎时看到魔搭发起了一个Agent创新应用比赛,看了下奖金还挺高的呀( •̀ ω •́ )y
|
8月前
|
存储 数据可视化 C#
三维基因组:multiHiCcompare 差异分析
三维基因组:multiHiCcompare 差异分析
268 13
三维基因组:multiHiCcompare 差异分析
|
7月前
|
数据可视化
HiCBricks|Hi-C 数据可视化与注释
HiCBricks|Hi-C 数据可视化与注释
HiCBricks|Hi-C 数据可视化与注释
|
8月前
|
存储 编解码 数据可视化
三维基因组:diffHic 差异分析
三维基因组:diffHic 差异分析
三维基因组:diffHic 差异分析
|
Web App开发 数据可视化 数据挖掘
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
|
数据可视化 关系型数据库 数据挖掘
scRNA分析|一(尽)文(力)解决你的单细胞火山图问题
scRNA分析|一(尽)文(力)解决你的单细胞火山图问题
1679 0
|
小程序
【微信小程序6】引入第三方UI的方法(ColorUi)
【微信小程序6】引入第三方UI的方法(ColorUi)
1256 0
|
存储 算法 数据处理
【C/C++ 数据结构 】广义表深度解析:从原理到C/C++实现
【C/C++ 数据结构 】广义表深度解析:从原理到C/C++实现
756 0
|
弹性计算
Minecraft服务器租用使用阿里云服务器自己搭MC更方便性价比高
阿里云服务器搭建Minecraft我的世界CPU内存配置怎么选择?公网带宽和系统盘选择多少合适?一般20人以内玩家、1.12版本的大型整合包、100个以内个轻量mod,2核4G配置就够用了,公网带宽选择3M或5M都可以,系统盘就高效云盘40GB够用了。阿里云服务器配置1核1G配置3个月19.17元、1核2G配置26.46元3个月、2核4G内存42.66元、2核8G内存58.86元3个月、4核8G配置75.06元、8核16G配置139.86元
1409 0
Minecraft服务器租用使用阿里云服务器自己搭MC更方便性价比高