Description:
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input:
Line 1: Two space-separated integers: N and K
Output:
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input:
5 17
Sample Output:
4
Hint:
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
题目大意:
FJ要抓奶牛。
开始输入N(FJ的位置)K(奶牛的位置)。
FJ有三种移动方法:1、向前走一步,耗时一分钟。
2、向后走一步,耗时一分钟。
3、向前移动到当前位置的两倍N*2,耗时一分钟。
问FJ抓到奶牛的最少时间。PS:奶牛是不会动的。
思路:1、如果FJ不在奶牛后面,那么他只有一步步往后移动到奶牛位置了,即N>=K时,输出N-K即可。
2、否则bfs+队列查找
程序代码:
#include<iostream> #include<cstdio> #include<cstring> #include<queue> using namespace std; #define maxn 100001 bool vis[maxn]; int step[maxn]; queue<int> q; int bfs(int n,int k) { int head,tail; q.push(n); step[n]=0; vis[n]=true; while(!q.empty()) { head=q.front(); q.pop(); for(int i=0;i<3;i++) { if(i==0) tail=head-1; else if(i==1) tail=head+1; else tail=head*2; if(tail<0||tail>maxn) continue; if(!vis[tail]) { q.push(tail); step[tail]=step[head]+1; vis[tail]=true; } if(tail==k) return step[tail]; } } } int main() { int n,k; while(cin>>n>>k) { memset(step,0,sizeof(step)); memset(vis,false,sizeof(vis)); while(!q.empty()) q.pop(); if(n>=k) cout<<n-k<<endl; else cout<<bfs(n,k)<<endl; } return 0; }