R实战 | 文章第一表:三线表的绘制(上)

简介: R实战 | 文章第一表:三线表的绘制

简介

大多数期刊文章的第一个表,即Table 1,是根据暴露程度分层的研究人群基线特征的描述性统计表。table1 包使得使用R生成这样一个表非常简单。结果输出格式是HTML(它的优点是易于复制到Word文档中)。


Example 1


# 安装和加载包
# install.packages("table1")
# install.packages("boot") 示例数据
library(table1) 
library(boot)
melanoma2 <- melanoma # 导入数据
# 修改变量名称
melanoma2$status <- 
  factor(melanoma2$status, 
         levels=c(2,1,3),
         labels=c("Alive", 
                  "Melanoma death", 
                  "Non-melanoma death"))
head(melanoma2) #查看示例数据
> head(melanoma2)
  time             status sex age year thickness
1   10 Non-melanoma death   1  76 1972      6.76
2   30 Non-melanoma death   1  56 1968      0.65
3   35              Alive   1  41 1977      1.34
4   99 Non-melanoma death   0  71 1968      2.90
5  185     Melanoma death   1  52 1965     12.08
6  204     Melanoma death   1  28 1971      4.84
  ulcer
1     1
2     0
3     0
4     0
5     1
6     1
# 绘制基本的三线表
table1(~ factor(sex) + age + factor(ulcer) + thickness | status, data=melanoma2)

注意,table1包使用了一个熟悉的公式接口,各变量之间用 + 分隔,条件符号 | 的右边为分层变量,参数data指定使用的数据集。

image.png


变量和分类的标签可能不适合用来描述结果,可以给分类变量指定标签,给特定的连续变量指定单位。我们可以为分类变量(sex和ulcer)创建带有描述性标签的因素,按照我们想要的方式为每个变量贴上标签,并为连续变量(age和thickness)指定单位,如下所示:

melanoma2$sex <- 
  factor(melanoma2$sex, levels=c(1,0),
         labels=c("Male", 
                  "Female"))
melanoma2$ulcer <- 
  factor(melanoma2$ulcer, levels=c(0,1),
         labels=c("Absent", 
                  "Present"))
# label()添加标签
label(melanoma2$sex)       <- "Sex"
label(melanoma2$age)       <- "Age"
label(melanoma2$ulcer)     <- "Ulceration"
label(melanoma2$thickness) <- "Thickness"
# units()添加单位
units(melanoma2$age)       <- "years"
units(melanoma2$thickness) <- "mm"
table1(~ sex + age + ulcer + thickness | status, data=melanoma2, overall="Total")
# overall = F即可不统计全部

image.png

Example 2


# 同样的 新建一个数据集
f <- function(x, n, ...) factor(sample(x, n, replace=T, ...), levels=x)
set.seed(427)
n <- 146
dat <- data.frame(id=1:n)
dat$treat <- f(c("Placebo", "Treated"), n, prob=c(1, 2)) # 2:1 randomization
dat$age   <- sample(18:65, n, replace=TRUE)
dat$sex   <- f(c("Female", "Male"), n, prob=c(.6, .4))  # 60% female
dat$wt    <- round(exp(rnorm(n, log(70), 0.23)), 1)
# Add some missing data
dat$wt[sample.int(n, 5)] <- NA
label(dat$age)   <- "Age"
label(dat$sex)   <- "Sex"
label(dat$wt)    <- "Weight"
label(dat$treat) <- "Treatment Group"
units(dat$age)   <- "years"
units(dat$wt)    <- "kg"
# 查看数据集
head(dat)
> head(dat)
  id   treat age    sex    wt
1  1 Treated  18 Female  62.6
2  2 Treated  50   Male  57.4
3  3 Treated  37   Male 104.6
4  4 Treated  25 Female  55.5
5  5 Placebo  60 Female  58.4
6  6 Treated  44 Female  41.9

也可以用两个变量进行分层

table1(~ age + wt | treat*sex, data=dat)

image.png

image-20210922160647960

也可以不分层

table1(~ treat + age + sex + wt, data=dat)

image.png

# 新建数据集|(治疗组多了个亚组)
dat$dose <- (dat$treat != "Placebo")*sample(1:2, n, replace=T)
dat$dose <- factor(dat$dose, labels=c("Placebo", "5 mg", "10 mg"))
# 查看数据集
head(dat)
> head(dat)
  id   treat age    sex    wt    dose
1  1 Treated  18 Female  62.6    5 mg
2  2 Treated  50   Male  57.4    5 mg
3  3 Treated  37   Male 104.6    5 mg
4  4 Treated  25 Female  55.5   10 mg
5  5 Placebo  60 Female  58.4 Placebo
6  6 Treated  44 Female  41.9   10 mg
strata <- c(split(dat, dat$dose), list("All treated"=subset(dat, treat=="Treated")), list(Overall=dat))
labels <- list(
  variables=list(age=render.varlabel(dat$age),
                 sex=render.varlabel(dat$sex),
                 wt=render.varlabel(dat$wt)),
  groups=list("", "Treated", ""))
table1(strata, labels, groupspan=c(1, 3, 1))

image.png


image.png

相关文章
|
机器学习/深度学习
gtsummary|巧合-绘制多种数据汇总表“神器”
gtsummary|巧合-绘制多种数据汇总表“神器”
197 0
R|tableone 快速绘制文章“表一”-基线特征三线表
R|tableone 快速绘制文章“表一”-基线特征三线表
159 0
|
数据挖掘 开发者 Python
数据透视表|学习笔记
快速学习数据透视表
186 0
数据透视表|学习笔记
|
计算机视觉
R实战 | 文章第一表:三线表的绘制(下)
R实战 | 文章第一表:三线表的绘制
541 0
R实战 | 文章第一表:三线表的绘制(下)
|
前端开发
HTML+CSS制作可以自适应的数据表格
HTML+CSS制作可以自适应的数据表格
HTML+CSS制作可以自适应的数据表格
好客租房135-获取并处理城市列表数据(热门处理数据)
好客租房135-获取并处理城市列表数据(热门处理数据)
145 0
好客租房135-获取并处理城市列表数据(热门处理数据)
|
数据格式
好客租房134-获取并处理城市列表数据
好客租房134-获取并处理城市列表数据
117 0
好客租房134-获取并处理城市列表数据
好客租房133-获取并处理城市列表数据
好客租房133-获取并处理城市列表数据
103 0
好客租房133-获取并处理城市列表数据