学了这么久的数据结构,还不理解并查集?看这篇文章如何实现

简介: 在学习数据结构的时候,老师多少会提到并查集,他的应用也是超级广泛。本文首先会通过案例来对并查集有一个介绍。然后给出并查集的java实现。

一、并查集原理


话说在江湖上有很多门派,这些门派相互争夺武林霸主。毕竟是江湖中人,两个人见面一言不合就开干。但是打归打,总是要判断一下是不是自己人,免得误伤。

v2-62aa7c5402e55840fc15ad6bec0319f5_1440w.jpg

于是乎,分了各种各样的门派,比如说张无忌和杨过俩人要打架,就先看看是不是同一门派的,不是的话那就再开干。要是张无忌和杨过觉得俩人合得来,那就合并门派。

而且规定了,每一个门派都有一个掌门人,比如武当派就是张三丰。华山派就是岳不群等等。


现在我们把目光转到并查集上。


(1)张无忌和杨过打架之前,先判断是否是同一门派,这就涉及到了并查集的查找操作。

(2)张无忌和杨过觉得俩人合得来,那就合并门派,这就涉及到了并查集的合并操作。

(3)每一个门派都有一个掌门人,这涉及到了并查集的存储方式。掌门人代表了这个门派的根节点。


现在我们从这个例子的思想开始认识一下并查集。


二、并查集简单实现


并查集主要涉及到两种操作,合并和查找。假设有一个动态集合:S={s1,s2,s3,…..sn}。在这个集合里面每一个元素都是一个江湖人物。比如S1代表了岳不群等等。

我们实现一个并查集的时候首先要考虑的就是存储结构,一般情况下有两种:数组和链表。现在我们使用数组来实现一下。


1、类架构

v2-a0f2e7d534cdca92c00d900e012396d3_1440w.jpg

在上面的类中,我们只是定义了一个雏形,还没有给出一个具体的实现。下面我们针对并查集的查找和合并操作。给出以下具体的实现。


在这里数组s中存储了每一个江湖人的上级。比如说 s[i] 表示该元素 i 的上级领导。


2、构造函数实现


在前文的例子中,我们规定了每一个门派都有一个掌门人。但是在江湖开始的时候,每个人都是自成一派的,也就是每一个江湖人的上级都是他自己。

v2-7b0ea4eacc56e3e090dbd3eb34ea5a3e_1440w.jpg

在这个构造函数里面,首先初始化了一个数组s,然后赋值numElements给count,接下来使用for循环,初始化每一个江湖人的上级都是他自己,在这里使用-1表示。


3、合并操作


Union操作就是将两个不相交的子集合合并成一个大集合。如何去合并呢?其实原理很简单,只需要把一棵子树的根结点指向

另一棵子树即可完成合并。也就是指定其中一个人是另外一个人的上级就好了。

v2-b1c1ceaa9a0eaa33d3a70bb6d180fc73_1440w.jpg

就这一行代码就可以实现合并,但是这个方式虽然简单,但是肯定是存在着很多问题,一会再说。


4、查找操作


Find操作就是查找某个元素所在的集合,返回该集合的代表元素。通俗的理解就是根据张无忌找到其相应门派的掌门人张三丰。

v2-a01c732d68c138c87eb1e593001fa169_1440w.jpg

到目前为止,我们可算是把并查集的基本实现都给完成了,但是前文中不是提到了嘛,合并的时候其实是有很多问题,而且查找的时候依然也有很多问题。别着急,想要我们的算法更加的高效,就必须要好好地改进一波。


三、并查集改进


1、出现问题


上面介绍的Union操作很随意:任选一棵子树,将另一棵子树的根指向它即完成了合并。也就是随意指定一个人成为另外一个人的上级。合并操作越来越多的时候,可能会出现一个非常不平衡的情况。

v2-5a068cc1c9dca8b4fcc22db91f8ddec4_1440w.jpg

这就是不好的现象,而且我们想要查找节点4的根节点,就需要4-->3-->2-->1一直不停的找,这效率真的很恶心。


1、合并操作改进


合并的时候,判断一下root1和root2谁的子节点多,谁多谁做上级领导。就好比是两个人见面合并,谁的人数,谁做大哥。

v2-7ab8f090e547ea15affbfa0b11f813ee_1440w.jpg

2、查找操作改进


在查找的时候,将这条路上的所有节点,全部让掌门人直接管理。这很明显改变了树的高度。

v2-d9d758316922b7c178f3af51d49a8f6c_1440w.jpg

OK,并查集的基本操作就是这样。面试的时候经常会有并查集相关的题目。我总结了一部分。大概十几道题,都是力扣上的。

相关文章
|
3月前
|
算法 开发者 计算机视觉
燃爆全场!Python并查集:数据结构界的网红,让你的代码炫酷无比!
在编程的世界里,总有一些数据结构以其独特的魅力和高效的性能脱颖而出,成为众多开发者追捧的“网红”。今天,我们要介绍的这位明星,就是Python中的并查集(Union-Find)——它不仅在解决特定问题上大放异彩,更以其优雅的设计和强大的功能,让你的代码炫酷无比,燃爆全场!
41 0
|
7月前
|
存储 NoSQL Redis
Redis系列学习文章分享---第十六篇(Redis原理1篇--Redis数据结构-动态字符串,insert,Dict,ZipList,QuickList,SkipList,RedisObject)
Redis系列学习文章分享---第十六篇(Redis原理1篇--Redis数据结构-动态字符串,insert,Dict,ZipList,QuickList,SkipList,RedisObject)
87 1
|
7月前
|
存储 消息中间件 缓存
Redis系列学习文章分享---第十七篇(Redis原理篇--数据结构,网络模型)
Redis系列学习文章分享---第十七篇(Redis原理篇--数据结构,网络模型)
111 0
|
4月前
|
Python
逆天改命!掌握Python并查集,数据结构难题从此不再是你的痛!
在编程旅程中,遇到棘手的数据结构难题是否让你苦恼?别担心,Python并查集(Union-Find)是你的得力助手。这是一种高效处理不相交集合合并及查询的数据结构,广泛应用于网络连通性、社交网络圈子划分等场景。通过维护每个集合的根节点,它实现了快速合并与查询。本文将介绍并查集的基本概念、应用场景以及如何在Python中轻松实现并查集,帮助你轻松应对各种数据结构挑战。
41 3
|
4月前
|
存储 C语言
数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。
|
4月前
|
Python
告别低效!Python并查集:数据结构界的超级英雄,拯救你的编程人生!
告别低效!Python并查集:数据结构界的超级英雄,拯救你的编程人生!
34 0
|
4月前
|
算法 开发者 计算机视觉
Python并查集:数据结构界的肌肉男,让你在编程路上无所畏惧!
在编程的浩瀚宇宙中,数据结构如同基石,构建了解决问题的坚实框架。而并查集(Union-Find),这位数据结构界的“肌肉男”,以其独特的魅力和强大的功能,让无数开发者在面对复杂关系处理时,都能感受到前所未有的从容与自信。今天,就让我们一同揭开并查集的神秘面纱,看看它是如何成为你编程路上的得力助手的。
37 0
|
4月前
|
算法 程序员 计算机视觉
Python并查集:数据结构界的肌肉男,让你在编程路上无所畏惧!
并查集,一种处理不相交集合合并与查询的数据结构,被誉为编程的“肌肉男”。它提供Find(找根节点)和Union(合并集合)操作,常用于好友关系判断、图像处理、集合合并等。Python实现中,路径压缩和按秩合并优化效率。并查集的高效性能使其成为解决问题的强大工具,助力程序员应对复杂挑战。
37 0
|
6月前
|
算法 程序员 图形学
脑洞大开!Python并查集:用最简单的方式,解决最复杂的数据结构问题!
【7月更文挑战第17天】并查集,数据结构明星,处理不相交集合合并与查询。Python实现核心操作:查找与合并。路径压缩优化查找,按秩合并保持平衡。实战应用如图连通性判断,算法竞赛利器。掌握并查集,解锁复杂问题简单解法,照亮编程之旅!
65 10
|
6月前
|
Python
告别低效!Python并查集:数据结构界的超级英雄,拯救你的编程人生!
【7月更文挑战第18天】并查集,数据结构超级英雄,用于不相交集合的合并与查询。Python实现包括初始化、查找根节点和合并操作。应用广泛,如社交网络分析、图论问题、集合划分等。示例代码展示了解决岛屿数量问题,统计连通的“1”单元格数。掌握并查集,提升编程效率,解决复杂问题。
59 6