Spring-beans架构设计原理

本文涉及的产品
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: ## IOC ## IOC,大名鼎鼎,如雷贯耳。官方给的定义是依赖注入(Dependency Injection)或者控制反转(Inversion of Control),都相当术语化,不太容易懂。 想象下日常中的生产过程,在生产之前是客户下单,单子上会详细注明需要的产品,包括产品的各方面规格属性,然后工厂据此生产。 IOC就是一个类似的过程,我们声明需要什么,工厂据此给我们生产出来

IOC

IOC,大名鼎鼎,如雷贯耳。官方给的定义是依赖注入(Dependency Injection)或者控制反转(Inversion of Control),都相当术语化,不太容易懂。

想象下日常中的生产过程,在生产之前是客户下单,单子上会详细注明需要的产品,包括产品的各方面规格属性,然后工厂据此生产。

IOC就是一个类似的过程,我们声明需要什么,工厂据此给我们生产出来。在这个过程中我们只是给出了需求清单,而不用再去辛苦new,以及不停设置各种属性。

Spring ioc

Spring-beans是ioc最著名的实现,而且没有之一,在业界几乎也就是ioc的代名词。Beans是整个spring的基石组件,可以说所有的spring组件都是基于它。

spring-beans整体架构

Spring-beans提供的优秀的可扩展能力使spring几乎能包容一切,用户只需遵循spring beans的相关规范--spring.schema定义配置文档的文法规范,spring.handler定义客户化配置的解析工具--就可以将bean接入到spring容器里。Bean接入后还可以通过实现BeanPostProcessor或者init-method对bean做后处理甚至替换bean。

Spring-beans的优秀设计使spring越来越像是一个生态圈,基于beans,aop、context、mvc、annotation等强大的组件都被接入进来,除此还有一些优秀的第三方组件,例如dubbo等。
spring生态圈
以aop为例,先在parse阶段对aop的配置生成Advised bean(Advisor),然后在所有bean的后处理阶段get Advised bean,并通过filter判断是否适应于当前bean,适用则会对bean织入advice。后面如果有时间会专门做篇aop,这里不再继续深入。

Dubbo和aop略有区别,dubbo的扩展选择了init method中的afterPropertiesSet,所有严格意义上dubbo是无法去spring的,虽然dubbo声明是可以,但其实只能不适用spring功能,而不能去spring jar,dubbo bean在init阶段生成ref,其实也是个代理--封装了远程访问的细节。

Bean定义

Spring-beans的核心实体是BeanDefinition和BeanFactory。前者映射我们的定义,后者则是依据定义生产bean的工厂。
beans概念模型
上图是spring beans的静态结构图,更多是偏重于bean解析,因为1. 理解了bean解析也就理解了一半spring扩展能力;2.BeanFactory的复杂不在于类之间的组织结构,而在于复杂的调用链路,也就没必要是静态结构方面做过多说明。需要说明的是,这只是概念模型,并不完全映射到类,因为spring的抽象层次太高,一个概念实体功能往往由多个类协同完成,画起来比较费劲,就类似BeanFactory,光搞清楚各个BeanFactory之间的关系就理得头痛,所以都尽可能从概念层面说明。

重要实体说明

  • DefaultListableBeanFactory是BeanDefintionRegistry的默认实现,它是个适配器,用于适配BeanFactory和BeanDefintionRegistry,工厂和定义通过它统一。它由ApplicationContext初始化,并被作为BeanDefinitionReader的registry。Reader对配置文档加载解析,生成definition并注册到registry--其实就是DefaultListableBeanFactory,这样工厂就拥有了类定义,bean初始化时也可以通过内部方法轻松获取到定义。
  • NamespaceHandlerResolver用于获取配置解析实体--NamespaceHandler。它和registry均内聚在上下文实体--ReaderContext中,parser内聚上下文从而可以间接访问handler和registry获得解析和注册的能力。

其他几个实体都比较直观便于理解,不再一一赘述。

整体交互过程

BeanDefinitionReader是整个bean解析的聚合根,它由ApplicationContext创建,并将DefaultListableBeanFactory作为registry传递给它。
定义解析交互过程
BeanDefinitionReader创建文档读取实体--DocuemntReader用于加载解析,并在step3加载文档时创建上下文--ReaderContext传递给文档读取实体。上下文贯穿于整个解析过程始终,它在文档读取实体使用parser解析时也会被传入parser中。

Parse过程是整个加载过程的核心,默认parser通过间接关联的识别器可以依据不同配置节点进行parser切换,当读到非默认配置时,则切换到对应客户化parser解析。解析完成后再通过间接关联的registry进行注册,从而配置定义进入spring管理,待getBean时使用。

客户化配置节点解析

客户化配置是spring非常重要的扩展点,spring强大的扩展能力有一半功能要归功于它,另一半中的80%就是后面要介绍的大名鼎鼎的BeanPostProcessor。不仅仅一些第三方扩展(例如开篇提到的dubbo)基于它,spring本身的很多模块也是基于它,例如spring-aop,spring-context等等,spring体系内除了默认的beans命名空间其余都基于它扩展的。

NamespaceHandlerResolver由BeanDefinitionReader初始化,后者在第一次被访问时读取spring.handlers文件。.handlers文件定义namespace uri和对应处理类的映射关系。例如:

http\://www.springframework.org/schema/context=org.springframework.context.config.ContextNamespaceHandler

上面的这行配置就是配置声明的解析类。

NamespaceHandlerResolver依据节点namespace获得NamespaceHandler,然后使用handler处理自定义配置节点。

public interface NamespaceHandler {
    void init();
    
    BeanDefinition parse(Element element, ParserContext parserContext);

    BeanDefinitionHolder decorate(Node source, BeanDefinitionHolder definition, ParserContext parserContext);

}

init方法注册localName和自定义parser的关系,parser和localName的关系由handler的提供者自己注册。例如:

public void init() {
        // In 2.0 XSD as well as in 2.1 XSD.
        registerBeanDefinitionParser("config", new ConfigBeanDefinitionParser());
        registerBeanDefinitionParser("aspectj-autoproxy", new AspectJAutoProxyBeanDefinitionParser());
        registerBeanDefinitionDecorator("scoped-proxy", new ScopedProxyBeanDefinitionDecorator());

        // Only in 2.0 XSD: moved to context namespace as of 2.1
        registerBeanDefinitionParser("spring-configured", new SpringConfiguredBeanDefinitionParser());
    }

上面就是aop注册parser的代码片段。config,aspectj-autoproxy这些就是localName,parse过程中不同的localName会切换到不同的parser解析。

spring先通过命名空间定位到handler,handler处理时再基于localName取相应的parser解析当前结点。比如这个配置,aop是命名空间,aspectj-autoproxy是localName。整个读取解析过程中先通过aop找到AopNamespaceHandler,再在解析到aspectj-autoproxy节点时使用AspectJAutoProxyBeanDefinitionParser来解析。如果要研究spring源码,一定要先找到对应parser,知道每个配置项对应到运行时的bean结构才能更好理解spring;而且parser可能会生成一些默认的BeanPostProcessor,如果意识不到这些后处理器,那么对代码的读取将会断片,陷入完全无法理解的境地。比如spring-aop就是由parser默认生成AopAutoProxyCreator这个BeanPostProcessor,在bean初始化后由这个processor对bean生成代理。

Bean获取

getBean
上图是getBean过程,整个过程很简洁,实际深入代码会发现非常繁琐。

BeanFactory和BeanDefinitionRegistry在spring里是统一的,参见第一节,图上为了方便理解,拆成两个概念实体。

需要注意的是第4步和第6步,bean配置时可以指定parent属性,如果有parent,则beanFactory会对local和parent做merge,merge的策略是对parent做覆盖,也可以理解为是对parent做继承。这和parent bean factory完全是两个概念,一定要区分开。

在beans的实体静态结构里,分别注明了parent bean definition和parent bean factory。两者都是被关联的,而不是被继承。后者有点像jvm的双亲委托模型,parent和child有各自的上下文,类似于jvm的命名空间。parent bean factory由applicationContext设置,无法配置。比如spring mvc就是两个父子两个容器,在容器refresh时相应的也会把父容器的BeanFactory设置成子容器BeanFactory的parentBeanFactory。

spring bean状态

bean状态
Bean主要经过instantiate,populate,initializeBean和registerDisposableBean4个状态,在状态流转中会调用很多spring预留的扩展接口。

  1. awareMethod
    如果bean继承了BeanFactoryAware,BeanNameAware,BeanClassLoaderAware,则会在initialize阶段将BeanFactory, BeanName和bean ClassLoader设置给Bean。

注意它和ApplicationContextAware是不一样的,后者是由BeanPostProcessor做后处理set的。

  1. init method
  2. method不仅仅包括配置的init-method方法还包括InitializedBean的afterPropertiesSet回调接口,这两者均是无参的,完全可以互相替代,两者中afterPropertiesSet调用在前。

BeanPostProcessor

上文提到过,spring另一半的扩展能力是由BeanPostProcessor提供的。先看下其接口定义

public interface BeanPostProcessor {
    Object postProcessBeforeInitialization(Object bean, String beanName) throws BeansException;

    Object postProcessAfterInitialization(Object bean, String beanName) throws BeansException;
}

两个方法分别在init-method调用前后,对bean做后处理。需要特别注意的就是postProcessAfterInitialization,大部分的spring扩展就是由它来完成的,比如上文提到的aop就是在这个阶段对bean做后处理生成代理。相应的也可以使用postProcessBeforeInitialization,但是此时init-method并未执行,后处理需要保证init-method带来的影响,@PostConstruct的方法执行就是在这个阶段。

实例化后处理器

InstantiationAwareBeanPostProcessor继承了BeanPostProcessor,主要用于在bean实例化前后做处理。

public interface InstantiationAwareBeanPostProcessor extends BeanPostProcessor {
    Object postProcessBeforeInstantiation(Class<?> beanClass, String beanName) throws BeansException;

    boolean postProcessAfterInstantiation(Object bean, String beanName) throws BeansException;

    PropertyValues postProcessPropertyValues(
            PropertyValues pvs, PropertyDescriptor[] pds, Object bean, String beanName)
            throws BeansException;
}
  • 实例化前处理,这个方法的参数是beanClass和beanName,在bean实例化前调用,如果这个方法的返回值不为空则getBean结束,用户收到的就是这个该方法的返回值。这个扩展点主要是留给预处理的,用户可以直接生成一个同类型的bean,替换实际bean,此时实际bean不会被实例化。
  • 实例化后处理连同属性后处理是spring内部非常重要的扩展点,annotation的field注入就是在这两个阶段完成。主要有两个关键实现:
    CommonAnnotationBeanPostProcessor,该类在实例化后处理阶段做属性注入,主要用于@Resource

AutowiredAnnotationBeanPostProcessor,该类在属性后处理阶段做属性注入,主要用于@Autowired
前者还继承了InitDestroyAnnotationBeanPostProcessor类,该类会在init-method被执行前调用@PostConstruct方法。

目录
相关文章
|
1月前
|
存储 SQL 关系型数据库
MySQL进阶突击系列(03) MySQL架构原理solo九魂17环连问 | 给大厂面试官的一封信
本文介绍了MySQL架构原理、存储引擎和索引的相关知识点,涵盖查询和更新SQL的执行过程、MySQL各组件的作用、存储引擎的类型及特性、索引的建立和使用原则,以及二叉树、平衡二叉树和B树的区别。通过这些内容,帮助读者深入了解MySQL的工作机制,提高数据库管理和优化能力。
|
12天前
|
Java Linux C语言
《docker基础篇:2.Docker安装》包括前提说明、Docker的基本组成、Docker平台架构图解(架构版)、安装步骤、阿里云镜像加速、永远的HelloWorld、底层原理
《docker基础篇:2.Docker安装》包括前提说明、Docker的基本组成、Docker平台架构图解(架构版)、安装步骤、阿里云镜像加速、永远的HelloWorld、底层原理
251 89
|
4天前
|
存储 缓存 监控
ClickHouse 架构原理及核心特性详解
ClickHouse 是由 Yandex 开发的开源列式数据库,专为 OLAP 场景设计,支持高效的大数据分析。其核心特性包括列式存储、字段压缩、丰富的数据类型、向量化执行和分布式查询。ClickHouse 通过多种表引擎(如 MergeTree、ReplacingMergeTree、SummingMergeTree)优化了数据写入和查询性能,适用于电商数据分析、日志分析等场景。然而,它在事务处理、单条数据更新删除及内存占用方面存在不足。
87 21
|
4天前
|
存储 消息中间件 druid
Druid 架构原理及核心特性详解
Druid 是一个分布式、支持实时多维OLAP分析的列式存储数据处理系统,适用于高速实时数据读取和灵活的多维数据分析。它通过Segment、Datasource等元数据概念管理数据,并依赖Zookeeper、Hadoop和Kafka等组件实现高可用性和扩展性。Druid采用列式存储、并行计算和预计算等技术优化查询性能,支持离线和实时数据分析。尽管其存储成本较高且查询语言功能有限,但在大数据实时分析领域表现出色。
45 19
|
4天前
|
存储 SQL NoSQL
Doris 架构原理及核心特性详解
Doris 是百度内部孵化的OLAP项目,现已开源并广泛应用。它采用MPP架构、向量化执行引擎和列存储技术,提供高性能、易用性和实时数据处理能力。系统由FE(管理节点)和BE(计算与存储节点)组成,支持水平扩展和高可用性。Doris 适用于海量数据分析,尤其在电商、游戏等行业表现出色,但资源消耗较大,复杂查询优化有局限性,生态集成度有待提高。
37 15
|
1天前
|
Java 网络安全 开发工具
Git进阶笔记系列(01)Git核心架构原理 | 常用命令实战集合
通过本文,读者可以深入了解Git的核心概念和实际操作技巧,提升版本管理能力。
|
20天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
91 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
13天前
|
搜索推荐 NoSQL Java
微服务架构设计与实践:用Spring Cloud实现抖音的推荐系统
本文基于Spring Cloud实现了一个简化的抖音推荐系统,涵盖用户行为管理、视频资源管理、个性化推荐和实时数据处理四大核心功能。通过Eureka进行服务注册与发现,使用Feign实现服务间调用,并借助Redis缓存用户画像,Kafka传递用户行为数据。文章详细介绍了项目搭建、服务创建及配置过程,包括用户服务、视频服务、推荐服务和数据处理服务的开发步骤。最后,通过业务测试验证了系统的功能,并引入Resilience4j实现服务降级,确保系统在部分服务故障时仍能正常运行。此示例旨在帮助读者理解微服务架构的设计思路与实践方法。
63 16
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
一文彻底讲透GPT架构及推理原理
本篇是作者从开发人员的视角,围绕着大模型正向推理过程,对大模型的原理的系统性总结,希望对初学者有所帮助。
|
1月前
|
NoSQL Java Redis
Spring Boot 自动配置机制:从原理到自定义
Spring Boot 的自动配置机制通过 `spring.factories` 文件和 `@EnableAutoConfiguration` 注解,根据类路径中的依赖和条件注解自动配置所需的 Bean,大大简化了开发过程。本文深入探讨了自动配置的原理、条件化配置、自定义自动配置以及实际应用案例,帮助开发者更好地理解和利用这一强大特性。
110 14