Go语言核心手册-3.字典

简介: 对于map的使用,大家肯定都会,所以基础的知识讲解的不多,主要是对map的底层结构进行了详细的讲解,正所谓知其然,必知其所以然!对于map的底层结构设计,感觉有些意思,特别是对于它的hash方式(取前N位和后M位),再结合它的扩容和缩容,其实可以从中提炼一些共性的东西。然后对于Rehash,这个和Redis的Rehash原因一样,这块应该是业内的通用设计方法,感兴趣的同学可以看看redis的字典结构和它rehash的方法。

3.1 基本用法


字典属于引用类型,初始化方式主要有2种,分别为:

m1 := make(map[string]int)m2 := map[string]int {    "lvmenglou": 32,    "litinajie": 28,}


字典是被设计成“not addressable”,所以不能直接修改value成员,如果需要修改value成员,需要对元素整体替换:

type user struct {    name string    age byte}m := map[int]user {    1: {"lvmenglou": 32}}m[1].age += 1 // 错误:cannot assign to m[1].age


不能对nil字典进行写操作,否则会触发panic,但是可以读。

var m map[string]intm["a"] = 1 // panic: assignment to entry in nil map


nil与空字典,这个需要注意:

var m1 map[string]int  // nil字典m2 := map[string]int{} // 空字典,不等于nil

map属于非线程安全,如果多个线程同时对一个map进行读、写、删除操作,会触发panic,可以使用支持线程安全的sync.Map。


3.2 内存模型


先看一下map的数据结构:

type hmap struct {    count     int     B         uint8  // bucket的数量是2^B, 最多可以放 loadFactor * 2^B 个元素,再多就要 hashGrow 了    hash0     uint32 // hash seed    buckets    unsafe.Pointer //2^B 大小的数组,如果 count == 0 的话,可能是 nil    oldbuckets unsafe.Pointer // 扩容的时候,buckets 长度会是 oldbuckets 的两倍,只有在 growing 时候为空。    // 其它省略...}type bmap struct {    topbits  [8]uint8    keys     [8]keytype    values   [8]valuetype    pad      uintptr    overflow uintptr}

B是map的bmap数组长度的对数,每个bmap里面存储了kv对,buckets是一个指针,指向实际存储的bmap数组的首地址,存储结构如下图:

image.pngimage.gif

每个bmap里面最多存储 8 个key,下图是bmap的内存模型,HOB Hash 指的就是top hash字段,每个 bucket 设计成最多只能放 8个key-value对,如果有第9个key-value落入当前的bucket,那就需要再构建一个bucket ,通过overflow指针连接起来(可以查看上图)。

image.png

3.3 查找数据


key经过哈希计算后得到哈希值,哈希值是64个bit 位(针对64位机),假如一个 key 经过哈希函数计算后,得到的哈希结果是:

10010111 | 000011110110110010001111001010100010010110010101010 │ 01010


其中最后5位是01010,值为10,表示10号桶。最前面8位10010111,值是151,用来在bmap中找数据用的,详见下图:

image.png


3.4 扩容缩容


一个map最多只能装8*2^B个数据,当数据量快满时,为了减少查询Hash冲突,就需要进行扩容。当bucket数量过多,然后数据又非常少时,就需要进行缩容(之前情况一般出现在数据大量删除的情况)。判断需要扩容和缩容的临界值,需要引入“装载因子”,感兴趣的同学可以自行百度。当进行扩容时,比如B=5扩容到B=6,最低位需要扩到6位,然后重新Hash,找到在[]bmap对应的hash值,最高位不变。缩容的话,就是相反的方式。(因为最低位的第6位是0或者1,所以第6位为0的数据,因为值不变,所以不会重新进行Hash,第6位为1的数据,需要被Hash到扩容后的桶中)

image.gif

为了更好举例,扩容前B=2,共有4个bmap,示例图如下:

image.pngimage.gif

假设overflow太多,触发了等量扩容,需要将数据变得更紧凑,操作如下:

image.png

假设针对上面情况,触发了2倍扩容,将B=2扩容到B=3,操作如下:



image.png


3.5 迭代遍历


本来map的遍历过程比较简单:遍历所有的bucket以及它后面挂的overflow bucket,然后挨个遍历 bucket中的所有 cell。每个bucket中包含8个cell,从有key的cell中取出 key和value,完成遍历。但是遍历如果发生在扩容的过程中,就会涉及到遍历新老 bucket 的过程。所以在遍历过成功,如果map在库容,需要对新旧数据同时进行遍历,下面是扩容过程示例,图中进行二倍扩容后,*oldbuckets中的1已经全部搬迁到了*buckets中,所以遍历时,需要对*oldbuckets和*buckets都进行遍历。

image.png


3.6 总结


对于map的使用,大家肯定都会,所以基础的知识讲解的不多,主要是对map的底层结构进行了详细的讲解,正所谓知其然,必知其所以然!对于map的底层结构设计,感觉有些意思,特别是对于它的hash方式(取前N位和后M位),再结合它的扩容和缩容,其实可以从中提炼一些共性的东西。然后对于Rehash,这个和Redis的Rehash原因一样,这块应该是业内的通用设计方法,感兴趣的同学可以看看redis的字典结构和它rehash的方法。

相关文章
|
9天前
|
存储 监控 算法
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
44 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用
|
28天前
|
存储 Go 索引
go语言中的数组(Array)
go语言中的数组(Array)
104 67
|
3天前
|
算法 安全 Go
Go 语言中实现 RSA 加解密、签名验证算法
随着互联网的发展,安全需求日益增长。非对称加密算法RSA成为密码学中的重要代表。本文介绍如何使用Go语言和[forgoer/openssl](https://github.com/forgoer/openssl)库简化RSA加解密操作,包括秘钥生成、加解密及签名验证。该库还支持AES、DES等常用算法,安装简便,代码示例清晰易懂。
29 16
|
6天前
|
监控 算法 安全
解锁企业计算机监控的关键:基于 Go 语言的精准洞察算法
企业计算机监控在数字化浪潮下至关重要,旨在保障信息资产安全与高效运营。利用Go语言的并发编程和系统交互能力,通过进程监控、网络行为分析及应用程序使用记录等手段,实时掌握计算机运行状态。具体实现包括获取进程信息、解析网络数据包、记录应用使用时长等,确保企业信息安全合规,提升工作效率。本文转载自:[VIPShare](https://www.vipshare.com)。
19 0
|
20天前
|
Go 数据安全/隐私保护 UED
优化Go语言中的网络连接:设置代理超时参数
优化Go语言中的网络连接:设置代理超时参数
|
29天前
|
存储 Go 索引
go语言中数组和切片
go语言中数组和切片
39 7
|
28天前
|
Go 开发工具
百炼-千问模型通过openai接口构建assistant 等 go语言
由于阿里百炼平台通义千问大模型没有完善的go语言兼容openapi示例,并且官方答复assistant是不兼容openapi sdk的。 实际使用中发现是能够支持的,所以自己写了一个demo test示例,给大家做一个参考。
|
29天前
|
程序员 Go
go语言中结构体(Struct)
go语言中结构体(Struct)
100 71
|
1月前
|
Go 索引
go语言for遍历数组或切片
go语言for遍历数组或切片
99 62
|
29天前
|
存储 Go
go语言中映射
go语言中映射
36 11