POJ-1502,MPI Maelstrom(Dijkstra)

简介: POJ-1502,MPI Maelstrom(Dijkstra)

Description:


BIT has recently taken delivery of their new supercomputer, a 32 processor Apollo Odyssey distributed shared memory machine with a hierarchical communication subsystem. Valentine McKee's research advisor, Jack Swigert, has asked her to benchmark the new system.

``Since the Apollo is a distributed shared memory machine, memory access and communication times are not uniform,'' Valentine told Swigert. ``Communication is fast between processors that share the same memory subsystem, but it is slower between processors that are not on the same subsystem. Communication between the Apollo and machines in our lab is slower yet.''


``How is Apollo's port of the Message Passing Interface (MPI) working out?'' Swigert asked.


``Not so well,'' Valentine replied. ``To do a broadcast of a message from one processor to all the other n-1 processors, they just do a sequence of n-1 sends. That really serializes things and kills the performance.''


``Is there anything you can do to fix that?''


``Yes,'' smiled Valentine. ``There is. Once the first processor has sent the message to another, those two can then send messages to two other hosts at the same time. Then there will be four hosts that can send, and so on.''


``Ah, so you can do the broadcast as a binary tree!''


``Not really a binary tree -- there are some particular features of our network that we should exploit. The interface cards we have allow each processor to simultaneously send messages to any number of the other processors connected to it. However, the messages don't necessarily arrive at the destinations at the same time -- there is a communication cost involved. In general, we need to take into account the communication costs for each link in our network topologies and plan accordingly to minimize the total time required to do a broadcast.''  


Input:


The input will describe the topology of a network connecting n processors. The first line of the input will be n, the number of processors, such that 1 <= n <= 100.


The rest of the input defines an adjacency matrix, A. The adjacency matrix is square and of size n x n. Each of its entries will be either an integer or the character x. The value of A(i,j) indicates the expense of sending a message directly from node i to node j. A value of x for A(i,j) indicates that a message cannot be sent directly from node i to node j.


Note that for a node to send a message to itself does not require network communication, so A(i,i) = 0 for 1 <= i <= n. Also, you may assume that the network is undirected (messages can go in either direction with equal overhead), so that A(i,j) = A(j,i). Thus only the entries on the (strictly) lower triangular portion of A will be supplied.


The input to your program will be the lower triangular section of A. That is, the second line of input will contain one entry, A(2,1). The next line will contain two entries, A(3,1) and A(3,2), and so on.  


Output:


Your program should output the minimum communication time required to broadcast a message from the first processor to all the other processors.  


Sample Input:


5


50


30 5


100 20 50


10 x x 10


Sample Output:


35


程序代码:  


#include<stdio.h>
#include<string.h>
#define INF 0x3f3f3f
char a[110];
int map[110][110],dis[110],book[110];
int main()
{
  int i,j,n,u,v,min,sum,k,max;
  while(~scanf("%d",&n))
  {
    memset(book,0,sizeof(book));
    for(i=1;i<=n;i++)
    {
      for(j=1;j<=n;j++)
      {
        if(i==j)
          map[i][j]=0;
        else
          map[i][j]=INF;
      }
    }
    for(i=2;i<=n;i++)
    {
      for(j=1;j<i;j++)
      {
        scanf("%s",a);
        if(a[0]=='x')
        {
          map[i][j]=map[j][i]=INF;
        }
        else
        {
          sum=0;
          for(k=0;a[k]!='\0';k++)
            sum=sum*10+(a[k]-'0');
          map[i][j]=map[j][i]=sum;
        }
      }
    }
    for(i=1;i<=n;i++)
      dis[i]=map[1][i];
    book[1]=1;
    for(i=1;i<n;i++)
    {
      min=INF;
      for(j=1;j<=n;j++)
      {
        if(book[j]==0&&dis[j]<min)
        {
          min=dis[j];
          u=j;
        }
      }
      book[u]=1;
      for(v=1;v<=n;v++)
      {
        if(map[u][v]<INF)
        {
          if(dis[v]>dis[u]+map[u][v])
            dis[v]=dis[u]+map[u][v];
        }
      }
    }
    max=-1;
    for(i=1;i<=n;i++)
      if(max<dis[i])
        max=dis[i];
    printf("%d\n",max);
  }
  return 0;
}


相关文章
|
6月前
|
算法
Floyd 最短路径【学习算法】
Floyd 最短路径【学习算法】
73 0
|
6月前
|
存储 算法
Dijkstra
Dijkstra“【5月更文挑战第18天】”
55 6
|
6月前
|
Java
hdu-1869-六度分离(dijkstra)
hdu-1869-六度分离(dijkstra)
38 0
|
算法 调度
迪杰斯特拉算法(Dijkstra's algorithm)以及示例
迪杰斯特拉算法(Dijkstra's algorithm)是一种非常重要且有价值的算法。它被广泛应用于计算图中单源最短路径问题,在交通路线规划、网络路由、作业调度等领域有着广泛的应用。迪杰斯特拉算法的最大优点是其简单易懂和时间复杂度较低,因此在实际应用中非常实用。它可以在稠密图和稀疏图中使用,对于边权均为非负数的图都可以使用。
迪杰斯特拉算法(Dijkstra's algorithm)以及示例
|
6月前
Poj 3255(dijkstra求次短路)
Poj 3255(dijkstra求次短路)
40 0
|
存储 算法
最短路径算法( Dijkstra + Bellman-Ford + SPFA + Floyd)
最短路径算法( Dijkstra + Bellman-Ford + SPFA + Floyd)
176 0
|
算法
dijkstra最短路算法
dijkstra最短路算法
|
算法 数据建模
Bellman算法和SPFA算法
Bellman算法和SPFA算法
|
算法 数据建模 消息中间件
单源最短路SPFA算法
$huaji^{233……}$模板:洛谷 P3371 #include #include #include #include #include using namespace std; struct data{ int v;int next; int valu...
1156 0