动手学深度学习(七) 梯度下降(下)

简介: 动手学深度学习(七) 梯度下降(下)

随机梯度下降


随机梯度下降参数更新

对于有 个样本对训练数据集,设 是第 个样本的损失函数, 则目标函数为:

其梯度为:

使用该梯度的一次更新的时间复杂度为

随机梯度下降更新公式 :

且有:

e.g.

def f(x1, x2):
    return x1 ** 2 + 2 * x2 ** 2  # Objective
def gradf(x1, x2):
    return (2 * x1, 4 * x2)  # Gradient
def sgd(x1, x2):  # Simulate noisy gradient
    global lr  # Learning rate scheduler
    (g1, g2) = gradf(x1, x2)  # Compute gradient
    (g1, g2) = (g1 + np.random.normal(0.1), g2 + np.random.normal(0.1))
    eta_t = eta * lr()  # Learning rate at time t
    return (x1 - eta_t * g1, x2 - eta_t * g2)  # Update variables
eta = 0.1
lr = (lambda: 1)  # Constant learning rate
show_trace_2d(f, train_2d(sgd, steps=50))

epoch 50, x1 -0.027566, x2 0.137605


88.png


动态学习率


def exponential():
    global ctr
    ctr += 1
    return math.exp(-0.1 * ctr)
ctr = 1
lr = exponential  # Set up learning rate
show_trace_2d(f, train_2d(sgd, steps=1000))

epoch 1000, x1 -0.677947, x2 -0.089379


89.png

def polynomial():
    global ctr
    ctr += 1
    return (1 + 0.1 * ctr)**(-0.5)
ctr = 1
lr = polynomial  # Set up learning rate
show_trace_2d(f, train_2d(sgd, steps=50))

epoch 50, x1 -0.095244, x2 -0.041674


90.png


小批量随机梯度下降


读取数据


读取数据

def get_data_ch7():  # 本函数已保存在d2lzh_pytorch包中方便以后使用
    data = np.genfromtxt('/home/kesci/input/airfoil4755/airfoil_self_noise.dat', delimiter='\t')
    data = (data - data.mean(axis=0)) / data.std(axis=0) # 标准化
    return torch.tensor(data[:1500, :-1], dtype=torch.float32), \
           torch.tensor(data[:1500, -1], dtype=torch.float32) # 前1500个样本(每个样本5个特征)
features, labels = get_data_ch7()
features.shape

torch.Size([1500, 5])

import pandas as pd
df = pd.read_csv('/home/kesci/input/airfoil4755/airfoil_self_noise.dat', delimiter='\t', header=None)
df.head(10)


91.png


从零开始实现

def sgd(params, states, hyperparams):
    for p in params:
        p.data -= hyperparams['lr'] * p.grad.data

# 本函数已保存在d2lzh_pytorch包中方便以后使用
def train_ch7(optimizer_fn, states, hyperparams, features, labels,
              batch_size=10, num_epochs=2):
    # 初始化模型
    net, loss = d2l.linreg, d2l.squared_loss
    w = torch.nn.Parameter(torch.tensor(np.random.normal(0, 0.01, size=(features.shape[1], 1)), dtype=torch.float32),
                           requires_grad=True)
    b = torch.nn.Parameter(torch.zeros(1, dtype=torch.float32), requires_grad=True)
    def eval_loss():
        return loss(net(features, w, b), labels).mean().item()
    ls = [eval_loss()]
    data_iter = torch.utils.data.DataLoader(
        torch.utils.data.TensorDataset(features, labels), batch_size, shuffle=True)
    for _ in range(num_epochs):
        start = time.time()
        for batch_i, (X, y) in enumerate(data_iter):
            l = loss(net(X, w, b), y).mean()  # 使用平均损失
            # 梯度清零
            if w.grad is not None:
                w.grad.data.zero_()
                b.grad.data.zero_()
            l.backward()
            optimizer_fn([w, b], states, hyperparams)  # 迭代模型参数
            if (batch_i + 1) * batch_size % 100 == 0:
                ls.append(eval_loss())  # 每100个样本记录下当前训练误差
    # 打印结果和作图
    print('loss: %f, %f sec per epoch' % (ls[-1], time.time() - start))
    d2l.set_figsize()
    d2l.plt.plot(np.linspace(0, num_epochs, len(ls)), ls)
    d2l.plt.xlabel('epoch')
    d2l.plt.ylabel('loss')

def train_sgd(lr, batch_size, num_epochs=2):
    train_ch7(sgd, None, {'lr': lr}, features, labels, batch_size, num_epochs)


对比

train_sgd(1, 1500, 6)

loss: 0.244373, 0.009881 sec per epoch


92.png

train_sgd(0.005, 1)

loss: 0.245968, 0.463836 sec per epoch


93.png

train_sgd(0.05, 10)

loss: 0.243900, 0.065017 sec per epoch


94.png


简洁实现

# 本函数与原书不同的是这里第一个参数优化器函数而不是优化器的名字
# 例如: optimizer_fn=torch.optim.SGD, optimizer_hyperparams={"lr": 0.05}
def train_pytorch_ch7(optimizer_fn, optimizer_hyperparams, features, labels,
                    batch_size=10, num_epochs=2):
    # 初始化模型
    net = nn.Sequential(
        nn.Linear(features.shape[-1], 1)
    )
    loss = nn.MSELoss()
    optimizer = optimizer_fn(net.parameters(), **optimizer_hyperparams)
    def eval_loss():
        return loss(net(features).view(-1), labels).item() / 2
    ls = [eval_loss()]
    data_iter = torch.utils.data.DataLoader(
        torch.utils.data.TensorDataset(features, labels), batch_size, shuffle=True)
    for _ in range(num_epochs):
        start = time.time()
        for batch_i, (X, y) in enumerate(data_iter):
            # 除以2是为了和train_ch7保持一致, 因为squared_loss中除了2
            l = loss(net(X).view(-1), y) / 2 
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            if (batch_i + 1) * batch_size % 100 == 0:
                ls.append(eval_loss())
    # 打印结果和作图
    print('loss: %f, %f sec per epoch' % (ls[-1], time.time() - start))
    d2l.set_figsize()
    d2l.plt.plot(np.linspace(0, num_epochs, len(ls)), ls)
    d2l.plt.xlabel('epoch')
    d2l.plt.ylabel('loss')

train_pytorch_ch7(optim.SGD, {"lr": 0.05}, features, labels, 10)

loss: 0.243770, 0.047664 sec per epoch


95.png

相关文章
|
6月前
|
机器学习/深度学习 数据可视化 算法
深度学习之梯度下降参数可视化
深度学习之梯度下降参数可视化
117 2
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
梯度下降求极值,机器学习&深度学习
梯度下降求极值,机器学习&深度学习
52 0
|
机器学习/深度学习 算法 TensorFlow
深度学习常用知识梯度下降学习率和反向传播
深度学习常用知识梯度下降学习率和反向传播
97 0
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】39. 梯度下降优化之动量法介绍及其Pytorch实现
【从零开始学习深度学习】39. 梯度下降优化之动量法介绍及其Pytorch实现
|
5月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
|
2月前
|
机器学习/深度学习 算法
深度学习中的优化算法:从梯度下降到Adam
本文深入探讨了深度学习中的核心——优化算法,重点分析了梯度下降及其多种变体。通过比较梯度下降、动量方法、AdaGrad、RMSProp以及Adam等算法,揭示了它们如何更高效地找到损失函数的最小值。此外,文章还讨论了不同优化算法在实际模型训练中的表现和选择依据,为深度学习实践提供了宝贵的指导。
90 7
|
5月前
|
机器学习/深度学习 人工智能 算法
【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
60 3
|
5月前
|
机器学习/深度学习 算法 C语言
【深度学习】优化算法:从梯度下降到Adam
【深度学习】优化算法:从梯度下降到Adam
158 1
|
5月前
|
机器学习/深度学习 算法 PyTorch
《PyTorch深度学习实践》--3梯度下降算法
《PyTorch深度学习实践》--3梯度下降算法
|
6月前
|
机器学习/深度学习 自然语言处理 算法
深度解析深度学习中的优化算法:从梯度下降到自适应方法
【4月更文挑战第28天】 在深度学习模型训练的复杂数学迷宫中,优化算法是寻找最优权重配置的关键导航者。本文将深入探讨几种主流的优化策略,揭示它们如何引导模型收敛至损失函数的最小值。我们将比较经典的批量梯度下降(BGD)、随机梯度下降(SGD)以及动量概念的引入,进一步探索AdaGrad、RMSProp和Adam等自适应学习率方法的原理与实际应用。通过剖析这些算法的理论基础和性能表现,我们旨在为读者提供一个关于选择合适优化器的参考视角。