大数据入门与实战-Hadoop生态圈技术总览

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据入门与实战-Hadoop生态圈技术总览

1 Hadoop生态圈技术纵览


51.png


52.png

2 分布式概念


53.png


3 HDFS 读写过程


54.png

HDFS 读过程


55.png

HDFS 写过程


4 伪分布式集群


56.png


5 MapReduce


MapReduce是一个编程框架,允许我们在分布式环境中对大型数据集执行分布式和并行处理:

  • MapReduce由两个不同的任务组成  Map和Reduce。
  • 正如MapReduce的名称所示,reducer阶段发生在mapper阶段完成之后。
  • 因此,第一个是Map任务,其中读取并处理数据块以生成作为中间输出的键值对。
  • Mapper或map作业(键值对)的输出被输入到Reducer。
  • reducer从多个map作业中接收键值对。
  • 然后,reducer将这些中间数据元组(中间键值对)聚合成一组较小的元组或键值对,这是最终输出。


MapReduce教程:MapReduce的字数统计示例

让我们通过一个示例来了解MapReduce是如何工作的,有一个 名为example.txt的文本文件,其内容如下:


Dear, Bear, River, Car, Car, River, Deer, Car ,Bear


现在,假设我们必须使用MapReduce对sample.txt执行单词统计,将找到这些单词和每个单词出现的次数。


57.png

  • 首先,我们将输入分成三个分区,如图所示。这将在所有Map节点之间分配工作。
  • 然后,我们对每个映射器中的单词进行标记,并为每个标记或单词提供硬编码值(1)。给出硬编码值等于1的理由是每个单词本身都会出现一次。
  • 现在,将创建一个键值对列表,其中键是单词和值是1。所以,对于第一行(Dear, Bear, River),我们有3个键值对 - Dear,1; Bear,1; River,1。映射过程在所有节点上保持不变。
  • 在映射器阶段之后,发生分区和重排的分区过程,以便将具有相同键的所有元组发送到相应的reducer。
  • 因此,在排序和重排阶段之后,每个reducer将具有唯一键和与该键相对应的值列表。例如,Bear,[1,1]; Car,[1,1,1] ..等
  • 现在,每个Reducer计算该值列表中存在的值。如图所示,reducer获取一个值列表,其中键值为[1,1]。然后,它计算列表中的1的数量,并将最终输出给出为 - Bear,2。
  • 最后,然后收集所有输出键/值对并将其写入输出文件中。


参考资料


MapReduce Tutorial – Fundamentals of MapReduce with MapReduce Example

https://www.cniao5.com/


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
5天前
|
机器学习/深度学习 运维 分布式计算
大数据技术专业就业前景
大数据技术专业就业前景广阔,广泛应用于互联网、金融、医疗等众多行业,助力企业数字化转型。岗位涵盖大数据开发、分析、运维及管理,如大数据工程师、分析师和系统运维工程师等。这些岗位因专业性和稀缺性而享有优厚薪资,尤其在一线城市可达20万至50万年薪。随着技术进步和经验积累,从业者可晋升为高级职位或投身数据咨询、创业等领域,发展空间巨大。
15 5
|
9天前
|
人工智能 编解码 搜索推荐
大模型、大数据与显示技术深度融合 加速智慧医疗多元化场景落地
大模型、大数据与显示技术深度融合 加速智慧医疗多元化场景落地
|
1月前
|
分布式计算 Hadoop Devops
Hadoop集群配置https实战案例
本文提供了一个实战案例,详细介绍了如何在Hadoop集群中配置HTTPS,包括生成私钥和证书文件、配置keystore和truststore、修改hdfs-site.xml和ssl-client.xml文件,以及重启Hadoop集群的步骤,并提供了一些常见问题的故障排除方法。
45 3
Hadoop集群配置https实战案例
|
1月前
|
分布式计算 监控 Hadoop
监控Hadoop集群实战篇
介绍了监控Hadoop集群的方法,包括监控Linux服务器、Hadoop指标、使用Ganglia监控Hadoop集群、Hadoop日志记录、通过Hadoop的Web UI进行监控以及其他Hadoop组件的监控,并提供了相关监控工具和资源的推荐阅读链接。
48 2
|
2月前
|
数据采集 人工智能 安全
AI大数据处理与分析实战--体育问卷分析
本文是关于使用AI进行大数据处理与分析的实战案例,详细记录了对深圳市义务教育阶段学校“每天一节体育课”网络问卷的分析过程,包括数据概览、交互Prompt、代码处理、年级和学校维度的深入分析,以及通过AI工具辅助得出的分析结果和结论。
|
2月前
|
分布式计算 资源调度 Hadoop
Hadoop入门基础(五):Hadoop 常用 Shell 命令一网打尽,提升你的大数据技能!
Hadoop入门基础(五):Hadoop 常用 Shell 命令一网打尽,提升你的大数据技能!
|
2月前
|
大数据 数据处理 分布式计算
JSF 逆袭大数据江湖!看前端框架如何挑战数据处理极限?揭秘这场技术与勇气的较量!
【8月更文挑战第31天】在信息爆炸时代,大数据已成为企业和政府决策的关键。JavaServer Faces(JSF)作为标准的 Java Web 框架,如何与大数据技术结合,高效处理大规模数据集?本文探讨大数据的挑战与机遇,介绍 JSF 与 Hadoop、Apache Spark 等技术的融合,展示其实现高效数据存储和处理的潜力,并提供示例代码,助您构建强大的大数据系统。
31 0
|
2月前
|
SQL 存储 分布式计算
MaxCompute 入门:大数据处理的第一步
【8月更文第31天】在当今数字化转型的时代,企业和组织每天都在产生大量的数据。有效地管理和分析这些数据变得至关重要。阿里云的 MaxCompute(原名 ODPS)是一个用于处理海量数据的大规模分布式计算服务。它提供了强大的存储能力以及丰富的数据处理功能,让开发者能够快速构建数据仓库、实时报表系统、数据挖掘等应用。本文将介绍 MaxCompute 的基本概念、架构,并演示如何开始使用这一大数据处理平台。
191 0
|
4天前
|
存储 分布式计算 资源调度
两万字长文向你解密大数据组件 Hadoop
两万字长文向你解密大数据组件 Hadoop
26 11
|
2月前
|
存储 分布式计算 Hadoop
下一篇
无影云桌面