经典分类网络结构(一)

简介: 经典分类网络结构(一)

学习目标



  • 目标


  • 知道LeNet-5网络结构
  • 了解经典的分类网络结构
  • 知道一些常见的卷机网络结构的优化
  • 知道NIN中1x1卷积原理以及作用
  • 知道Inception的作用


  • 了解卷积神经网络学习过程内容


  • 应用



下面我们主要以一些常见的网络结构去解析,并介绍大部分的网络的特点。这里看一下卷积的发展历史图。


image.png


3.3.1 LeNet-5解析



首先我们从一个稍微早一些的卷积网络结构LeNet-5(这里稍微改了下名字),开始的目的是用来识别数字的。从前往后介绍完整的结构组成,并计算相关输入和输出。


3.3.1.1 网络结构



image.png


  • 激活层默认不画网络图当中,这个网络结构当时使用的是sigmoid和Tanh函数,还没有出现Relu函数
  • 将卷积、激活、池化视作一层,即使池化没有参数


3.3.1.2 参数形状总结


image.png


  • 中间的特征大小变化不宜过快


事实上,在过去很多年,许多机构或者学者都发布了各种各样的网络,其实去了解设计网络最好的办法就是去研究现有的网络结构或者论文。大多数网络设计出来是为了Image Net的比赛(解决ImageNet中的1000类图像分类或定位问题),后来大家在各个业务上进行使用。


3.3.2 AlexNet


2012年,Alex Krizhevsky、Ilya Sutskever在多伦多大学Geoff Hinton的实验室设计出了一个深层的卷积神经网络AlexNet,夺得了2012年ImageNet LSVRC的冠军,且准确率远超第二名(top5错误率为15.3%,第二名为26.2%),引起了很大的轰动。AlexNet可以说是具有历史意义的一个网络结构。


image.png


总参数量:60M=6000万,5层卷积+3层全连接

使用了非线性激活函数:ReLU

防止过拟合的方法:Dropout,数据扩充(Data augmentation)

批标准化层的使用


3.3.3 卷积网络结构的优化


3.3.3.1 常见结构特点


整个过程:AlexNet—NIN—(VGG—GoogLeNet)—ResNet


  • NIN:引入1 * 1卷积
  • VGG,斩获2014年分类第二(第一是GoogLeNet),定位任务第一。
  • 参数量巨大,140M = 1.4亿
  • 19layers
  • VGG 版本
  • VGG16
  • VGG19


image.png


  • GoogleNet,2014年比赛冠军的model,这个model证明了一件事:用更多的卷积,更深的层次可以得到更好的结构。(当然,它并没有证明浅的层次不能达到这样的效果)


  • 500万的参数量
  • 22layers
  • 引入了Inception模块
  • Inception V1
  • Inception V2
  • Inception V3
  • Inception V4


image.png


  • 下面我们将针对卷积网络架构常用的一些结构进行详细分析,来探究这些结构带来的好处


目录
相关文章
|
4月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
424 0
|
3月前
|
机器学习/深度学习 数据采集 存储
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
368 0
|
5月前
|
机器学习/深度学习 数据采集 运维
匹配网络处理不平衡数据集的6种优化策略:有效提升分类准确率
匹配网络是一种基于度量的元学习方法,通过计算查询样本与支持集样本的相似性实现分类。其核心依赖距离度量函数(如余弦相似度),并引入注意力机制对特征维度加权,提升对关键特征的关注能力,尤其在处理复杂或噪声数据时表现出更强的泛化性。
279 6
匹配网络处理不平衡数据集的6种优化策略:有效提升分类准确率
|
4月前
|
安全 网络性能优化 网络虚拟化
网络交换机分类与功能解析
接入交换机(ASW)连接终端设备,提供高密度端口与基础安全策略;二层交换机(LSW)基于MAC地址转发数据,构成局域网基础;汇聚交换机(DSW)聚合流量并实施VLAN路由、QoS等高级策略;核心交换机(CSW)作为网络骨干,具备高性能、高可靠性的高速转发能力;中间交换机(ISW)可指汇聚层设备或刀片服务器内交换模块。典型流量路径为:终端→ASW→DSW/ISW→CSW,分层架构提升网络扩展性与管理效率。(238字)
1082 0
|
11月前
|
机器学习/深度学习 编解码 TensorFlow
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
550 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
11月前
|
机器学习/深度学习 自动驾驶 计算机视觉
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
476 61
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
|
8月前
|
存储 数据管理 网络虚拟化
特殊网络类型分类
本文介绍了网络技术中的关键概念,包括虚拟局域网(VLAN)、存储区域网络(SAN)、网络桥接、接入网以及按拓扑结构和交换方式分类的网络类型。VLAN通过逻辑分隔提高性能与安全性;SAN提供高性能的数据存储解决方案;网络桥接实现不同网络间的互联互通;接入网解决“最后一千米”的连接问题。此外,文章详细对比了总线型、星型、树型、环型和网状型等网络拓扑结构的特点,并分析了电路交换、报文交换和分组交换的优缺点,为网络设计与应用提供了全面参考。
297 8
|
11月前
|
机器学习/深度学习 编解码 TensorFlow
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
589 14
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
11月前
|
计算机视觉
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
247 5
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
|
11月前
|
机器学习/深度学习 自动驾驶 计算机视觉
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
913 13