SpringBoot应用篇之借助Redis实现排行榜功能

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 上面可以说是一个排行榜需要实现的几个基本要素了,正好我们刚讲到了redis这一节,本篇则开始实战,详细描述如何借助redis来实现一份全球排行榜

在一些游戏和活动中,当涉及到社交元素的时候,排行榜可以说是一个很常见的需求场景了,就我们通常见到的排行榜而言,会提供以下基本功能


  • 全球榜单,对所有用户根据积分进行排名,并在榜单上展示前多少
  • 个人排名,用户查询自己所在榜单的位置,并获知周边小伙伴的积分,方便自己比较和超越
  • 实时更新,用户的积分实时更改,榜单也需要实时更新


上面可以说是一个排行榜需要实现的几个基本要素了,正好我们刚讲到了redis这一节,本篇则开始实战,详细描述如何借助redis来实现一份全球排行榜


I. 方案设计



在进行方案设计之前,先模拟一个真实的应用场景,然后进行辅助设计与实现


1. 业务场景说明


以前一段时间特别🔥的跳一跳这个小游戏进行说明,假设我们这个游戏用户遍布全球,因此我们要设计一个全球的榜单,每个玩家都会根据自己的战绩在排行榜中获取一个排名,我们需要支持全球榜单的查询,自己排位的查询这两种最基本的查询场景;此外当我的分数比上一次的高时,我需要更新我的积分,重新获得我的排名;

此外也会有一些高级的统计,比如哪个分段的人数最多,什么分段是瓶颈点,再根据地理位置计算平均分等等


本篇博文主要内容将放在排行榜的设计与实现上;至于高级的功能实现,后续有机会再说


2. 数据结构


因为排行榜的功能比较简单了,也不需要什么复杂的结构设计,也没有什么复杂的交互,因此我们需要确认的无非就是数据结构 + 存储单元


存储单元


表示排行榜中每一位上应该持有的信息,一个最简单的如下

// 用来表明具体的用户
long userId;
// 用户在排行榜上的排名
long rank;
// 用户的历史最高积分,也就是排行榜上的积分
long score;
复制代码


数据结构


排行榜,一般而言都是连续的,借此我们可以联想到一个合适的数据结构LinkedList,好处在于排名变动时,不需要数组的拷贝


image.png

上图演示,当一个用户积分改变时,需要向前遍历找到合适的位置,插入并获取新的排名, 在更新和插入时,相比较于ArrayList要好很多,但依然有以下几个缺陷


问题1:用户如何获取自己的排名?


使用LinkedList在更新插入和删除的带来优势之外,在随机获取元素的支持会差一点,最差的情况就是从头到尾进行扫描


问题2:并发支持的问题?


当有多个用户同时更新score时,并发的更新排名问题就比较突出了,当然可以使用jdk中类似写时拷贝数组的方案


上面是我们自己来实现这个数据结构时,会遇到的一些问题,当然我们的主题是借助redis来实现排行榜,下面则来看下,利用redis可以怎么简单的支持我们的需求场景


3. redis使用方案


这里主要使用的是redis的ZSET数据结构,带权重的集合,下面分析一下可能性


  • set: 集合确保里面元素的唯一性
  • 权重:这个可以看做我们的score,这样每个元素都有一个score;
  • zset:根据score进行排序的集合


从zset的特性来看,我们每个用户的积分,丢到zset中,就是一个带权重的元素,而且是已经排好序的了,只需要获取元素对应的index,就是我们预期的排名


II. 功能实现



再具体的实现之前,可以先查看一下redis中zset的相关方法和操作姿势:SpringBoot高级篇Redis之ZSet数据结构使用姿势


我们主要是借助zset提供的一些方法来实现排行榜的需求,下面的具体方法设计中,也会有相关说明


0. 前提准备


首先准备好redis环境,spring项目搭建好,然后配置好redisTemplate

/**
 * Created by @author yihui in 15:05 18/11/8.
 */
public class DefaultSerializer implements RedisSerializer<Object> {
    private final Charset charset;
    public DefaultSerializer() {
        this(Charset.forName("UTF8"));
    }
    public DefaultSerializer(Charset charset) {
        Assert.notNull(charset, "Charset must not be null!");
        this.charset = charset;
    }
    @Override
    public byte[] serialize(Object o) throws SerializationException {
        return o == null ? null : String.valueOf(o).getBytes(charset);
    }
    @Override
    public Object deserialize(byte[] bytes) throws SerializationException {
        return bytes == null ? null : new String(bytes, charset);
    }
}
@Configuration
public class AutoConfig {
    @Bean(value = "selfRedisTemplate")
    public RedisTemplate<String, String> stringRedisTemplate(RedisConnectionFactory redisConnectionFactory) {
        StringRedisTemplate redis = new StringRedisTemplate();
        redis.setConnectionFactory(redisConnectionFactory);
        // 设置redis的String/Value的默认序列化方式
        DefaultSerializer stringRedisSerializer = new DefaultSerializer();
        redis.setKeySerializer(stringRedisSerializer);
        redis.setValueSerializer(stringRedisSerializer);
        redis.setHashKeySerializer(stringRedisSerializer);
        redis.setHashValueSerializer(stringRedisSerializer);
        redis.afterPropertiesSet();
        return redis;
    }
}
复制代码


1. 用户上传积分


上传用户积分,然而zset中有一点需要注意的是其排行是根据score进行升序排列,这个就和我们实际的情况不太一样了;为了和实际情况一致,可以将score取反;另外一个就是排行默认是从0开始的,这个与我们的实际也不太一样,需要+1


/**
 * 更新用户积分,并获取最新的个人所在排行榜信息
 *
 * @param userId
 * @param score
 * @return
 */
public RankDO updateRank(Long userId, Float score) {
    // 因为zset默认积分小的在前面,所以我们对score进行取反,这样用户的积分越大,对应的score越小,排名越高
    redisComponent.add(RANK_PREFIX, String.valueOf(userId), -score);
    Long rank = redisComponent.rank(RANK_PREFIX, String.valueOf(userId));
    return new RankDO(rank + 1, score, userId);
}
复制代码


上面的实现,主要利用了zset的两个方法,一个是添加元素,一个是查询排名,对应的redis操作方法如下,


@Resource(name = "selfRedisTemplate")
private StringRedisTemplate redisTemplate;
/**
 * 添加一个元素, zset与set最大的区别就是每个元素都有一个score,因此有个排序的辅助功能;  zadd
 *
 * @param key
 * @param value
 * @param score
 */
public void add(String key, String value, double score) {
    redisTemplate.opsForZSet().add(key, value, score);
}
    /**
 * 判断value在zset中的排名  zrank
 *
 * 积分小的在前面
 *
 * @param key
 * @param value
 * @return
 */
public Long rank(String key, String value) {
    return redisTemplate.opsForZSet().rank(key, value);
}
复制代码


2. 获取个人排名


获取个人排行信息,主要就是两个一个是排名一个是积分;需要注意的是当用户没有积分时(即没有上榜时),需要额外处理


/**
 * 获取用户的排行榜位置
 *
 * @param userId
 * @return
 */
public RankDO getRank(Long userId) {
    // 获取排行, 因为默认是0为开头,因此实际的排名需要+1
    Long rank = redisComponent.rank(RANK_PREFIX, String.valueOf(userId));
    if (rank == null) {
        // 没有排行时,直接返回一个默认的
        return new RankDO(-1L, 0F, userId);
    }
    // 获取积分
    Double score = redisComponent.score(RANK_PREFIX, String.valueOf(userId));
    return new RankDO(rank + 1, Math.abs(score.floatValue()), userId);
}
复制代码


上面的封装中,除了使用前面的获取用户排名之外,还有获取用户积分

/**
 * 查询value对应的score   zscore
 *
 * @param key
 * @param value
 * @return
 */
public Double score(String key, String value) {
    return redisTemplate.opsForZSet().score(key, value);
}
复制代码


3. 获取个人周边用户积分及排行信息


有了前面的基础之后,这个就比较简单了,首先获取用户的个人排名,然后查询固定排名段的数据即可


private List<RankDO> buildRedisRankToBizDO(Set<ZSetOperations.TypedTuple<String>> result, long offset) {
    List<RankDO> rankList = new ArrayList<>(result.size());
    long rank = offset;
    for (ZSetOperations.TypedTuple<String> sub : result) {
        rankList.add(new RankDO(rank++, Math.abs(sub.getScore().floatValue()), Long.parseLong(sub.getValue())));
    }
    return rankList;
}
/**
 * 获取用户所在排行榜的位置,以及排行榜中其前后n个用户的排行信息
 *
 * @param userId
 * @param n
 * @return
 */
public List<RankDO> getRankAroundUser(Long userId, int n) {
    // 首先是获取用户对应的排名
    RankDO rank = getRank(userId);
    if (rank.getRank() <= 0) {
        // fixme 用户没有上榜时,不返回
        return Collections.emptyList();
    }
    // 因为实际的排名是从0开始的,所以查询周边排名时,需要将n-1
    Set<ZSetOperations.TypedTuple<String>> result =
            redisComponent.rangeWithScore(RANK_PREFIX, Math.max(0, rank.getRank() - n - 1), rank.getRank() + n - 1);
    return buildRedisRankToBizDO(result, rank.getRank() - n);
}
复制代码


看下上面的实现,获取用户排名之后,就可以计算要查询的排名范围[Math.max(0, rank.getRank() - n - 1), rank.getRank() + n - 1]


其次需要注意的如何将返回的结果进行封装,上面写了个转换类,主要起始排行榜信息


4. 获取topn排行榜


上面的理解之后,这个就很简答了

/**
 * 获取前n名的排行榜数据
 *
 * @param n
 * @return
 */
public List<RankDO> getTopNRanks(int n) {
    Set<ZSetOperations.TypedTuple<String>> result = redisComponent.rangeWithScore(RANK_PREFIX, 0, n - 1);
    return buildRedisRankToBizDO(result, 1);
}
复制代码


III. 测试小结



首先准备一个测试脚本,批量的插入一下积分,用于后续的查询更新使用

public class RankInitTest {
    private Random random;
    private RestTemplate restTemplate;
    @Before
    public void init() {
        random = new Random();
        restTemplate = new RestTemplate();
    }
    private int genUserId() {
        return random.nextInt(1024);
    }
    private double genScore() {
        return random.nextDouble() * 100;
    }
    @Test
    public void testInitRank() {
        for (int i = 0; i < 30; i++) {
            restTemplate.getForObject("http://localhost:8080/update?userId=" + genUserId() + "&score=" + genScore(),
                    String.class);
        }
    }
}
复制代码


1. 测试


上面执行完毕之后,排行榜中应该就有三十条数据,接下来我们开始逐个接口测试,首先获取top10排行


对应的rest接口如下

@RestController
public class RankAction {
    @Autowired
    private RankListComponent rankListComponent;
    @GetMapping(path = "/topn")
    public List<RankDO> showTopN(int n) {
        return rankListComponent.getTopNRanks(n);
    }
}
复制代码

image.png

接下来我们挑选第15名,获取对应的排行榜信息

@GetMapping(path = "/rank")
public RankDO queryRank(long userId) {
    return rankListComponent.getRank(userId);
}
复制代码

首先我们从redis中获取第15名的userId,然后再来查询

image.png


然后尝试修改下他的积分,改大一点,将score改成80分,则会排到第五名

@GetMapping(path = "/update")
public RankDO updateScore(long userId, float score) {
    return rankListComponent.updateRank(userId, score);
}
复制代码

image.png


最后我们查询下这个用户周边2个的排名信息

@GetMapping(path = "/around")
public List<RankDO> around(long userId, int n) {
    return rankListComponent.getRankAroundUser(userId, n);
}
复制代码

image.png


2. 小结


上面利用redis的zset实现了排行榜的基本功能,主要借助下面三个方法


  • range 获取范围排行信息
  • score 获取对应的score
  • range 获取对应的排名


虽然实现了基本功能,但是问题还是有不少的


  • 上面的实现,redis的复合操作,原子性问题
  • 由原子性问题导致并发安全问题
  • 性能怎么样需要测试



相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
6天前
|
消息中间件 缓存 Java
手写模拟Spring Boot启动过程功能
【11月更文挑战第19天】Spring Boot自推出以来,因其简化了Spring应用的初始搭建和开发过程,迅速成为Java企业级应用开发的首选框架之一。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,帮助读者深入理解其工作机制。
21 3
|
6天前
|
Java 开发者 微服务
手写模拟Spring Boot自动配置功能
【11月更文挑战第19天】随着微服务架构的兴起,Spring Boot作为一种快速开发框架,因其简化了Spring应用的初始搭建和开发过程,受到了广大开发者的青睐。自动配置作为Spring Boot的核心特性之一,大大减少了手动配置的工作量,提高了开发效率。
23 0
|
1月前
|
Java API 数据库
构建RESTful API已经成为现代Web开发的标准做法之一。Spring Boot框架因其简洁的配置、快速的启动特性及丰富的功能集而备受开发者青睐。
【10月更文挑战第11天】本文介绍如何使用Spring Boot构建在线图书管理系统的RESTful API。通过创建Spring Boot项目,定义`Book`实体类、`BookRepository`接口和`BookService`服务类,最后实现`BookController`控制器来处理HTTP请求,展示了从基础环境搭建到API测试的完整过程。
42 4
|
1月前
|
JavaScript 安全 Java
如何使用 Spring Boot 和 Ant Design Pro Vue 实现动态路由和菜单功能,快速搭建前后端分离的应用框架
本文介绍了如何使用 Spring Boot 和 Ant Design Pro Vue 实现动态路由和菜单功能,快速搭建前后端分离的应用框架。首先,确保开发环境已安装必要的工具,然后创建并配置 Spring Boot 项目,包括添加依赖和配置 Spring Security。接着,创建后端 API 和前端项目,配置动态路由和菜单。最后,运行项目并分享实践心得,包括版本兼容性、安全性、性能调优等方面。
145 1
|
30天前
|
Java API 数据库
Spring Boot框架因其简洁的配置、快速的启动特性及丰富的功能集而备受开发者青睐
本文通过在线图书管理系统案例,详细介绍如何使用Spring Boot构建RESTful API。从项目基础环境搭建、实体类与数据访问层定义,到业务逻辑实现和控制器编写,逐步展示了Spring Boot的简洁配置和强大功能。最后,通过Postman测试API,并介绍了如何添加安全性和异常处理,确保API的稳定性和安全性。
36 0
|
20天前
|
JavaScript 安全 Java
如何使用 Spring Boot 和 Ant Design Pro Vue 构建一个具有动态路由和菜单功能的前后端分离应用。
本文介绍了如何使用 Spring Boot 和 Ant Design Pro Vue 构建一个具有动态路由和菜单功能的前后端分离应用。首先,创建并配置 Spring Boot 项目,实现后端 API;然后,使用 Ant Design Pro Vue 创建前端项目,配置动态路由和菜单。通过具体案例,展示了如何快速搭建高效、易维护的项目框架。
95 62
|
16天前
|
前端开发 Java easyexcel
SpringBoot操作Excel实现单文件上传、多文件上传、下载、读取内容等功能
SpringBoot操作Excel实现单文件上传、多文件上传、下载、读取内容等功能
55 8
|
12天前
|
存储 NoSQL PHP
如何用Redis高效实现点赞功能?用Set?还是Bitmap?
在众多软件应用中,点赞功能几乎成为标配。本文从实际需求出发,探讨如何利用 Redis 的 `Set` 和 `Bitmap` 数据结构设计高效点赞系统,分析其优缺点,并提供 PHP 实现示例。通过对比两种方案,帮助开发者选择最适合的存储方式。
26 3
|
17天前
|
JavaScript 安全 Java
如何使用 Spring Boot 和 Ant Design Pro Vue 构建一个前后端分离的应用框架,实现动态路由和菜单功能
本文介绍了如何使用 Spring Boot 和 Ant Design Pro Vue 构建一个前后端分离的应用框架,实现动态路由和菜单功能。首先,确保开发环境已安装必要的工具,然后创建并配置 Spring Boot 项目,包括添加依赖和配置 Spring Security。接着,创建后端 API 和前端项目,配置动态路由和菜单。最后,运行项目并分享实践心得,帮助开发者提高开发效率和应用的可维护性。
35 2
|
21天前
|
JSON Java API
springboot集成ElasticSearch使用completion实现补全功能
springboot集成ElasticSearch使用completion实现补全功能
24 1