jdk8 里面常用的Stream Api(下)

简介: jdk8 里面常用的Stream Api(下)

清单 14. Optional 的两个用例


String strA = " abcd ", strB = null;
print(strA);
print("");
print(strB);
getLength(strA);
getLength("");
getLength(strB);
public static void print(String text) {
 // Java 8
 Optional.ofNullable(text).ifPresent(System.out::println);
 // Pre-Java 8
 if (text != null) {
 System.out.println(text);
 }
 }
public static int getLength(String text) {
 // Java 8
return Optional.ofNullable(text).map(String::length).orElse(-1);
 // Pre-Java 8
// return if (text != null) ? text.length() : -1;
 };
复制代码


在更复杂的 if (xx != null) 的情况中,使用 Optional 代码的可读性更好,而且它提供的是编译时检查,能极大的降低 NPE 这种 Runtime Exception 对程序的影响,或者迫使程序员更早的在编码阶段处理空值问题,而不是留到运行时再发现和调试。


Stream 中的 findAny、max/min、reduce 等方法等返回 Optional 值。还有例如 IntStream.average() 返回 OptionalDouble 等等。


reduce


这个方法的主要作用是把 Stream 元素组合起来。它提供一个起始值(种子),然后依照运算规则(BinaryOperator),和前面 Stream 的第一个、第二个、第 n 个元素组合。从这个意义上说,字符串拼接、数值的 sum、min、max、average 都是特殊的


reduce。例如 Stream 的 sum 就相当于


Integer sum = integers.reduce(0, (a, b) -> a+b); 或

Integer sum = integers.reduce(0, Integer::sum);


也有没有起始值的情况,这时会把 Stream 的前面两个元素组合起来,返回的是 Optional。


清单 15. reduce 的用例


// 字符串连接,concat = "ABCD"
String concat = Stream.of("A", "B", "C", "D").reduce("", String::concat); 
// 求最小值,minValue = -3.0
double minValue = Stream.of(-1.5, 1.0, -3.0, -2.0).reduce(Double.MAX_VALUE, Double::min); 
// 求和,sumValue = 10, 有起始值
int sumValue = Stream.of(1, 2, 3, 4).reduce(0, Integer::sum);
// 求和,sumValue = 10, 无起始值
sumValue = Stream.of(1, 2, 3, 4).reduce(Integer::sum).get();
// 过滤,字符串连接,concat = "ace"
concat = Stream.of("a", "B", "c", "D", "e", "F").
 filter(x -> x.compareTo("Z") > 0).
 reduce("", String::concat);
复制代码


上面代码例如第一个示例的 reduce(),第一个参数(空白字符)即为起始值,第二个参数(String::concat)为 BinaryOperator。这类有起始值的 reduce() 都返回具体的对象。而对于第四个示例没有起始值的 reduce(),由于可能没有足够的元素,返回的是 Optional,请留意这个区别。


limit/skip


limit 返回 Stream 的前面 n 个元素;skip 则是扔掉前 n 个元素(它是由一个叫 subStream 的方法改名而来)。


清单 16. limit 和 skip 对运行次数的影响


public void testLimitAndSkip() {
 List<Person> persons = new ArrayList();
 for (int i = 1; i <= 10000; i++) {
 Person person = new Person(i, "name" + i);
 persons.add(person);
 }
List<String> personList2 = persons.stream().
map(Person::getName).limit(10).skip(3).collect(Collectors.toList());
 System.out.println(personList2);
}
private class Person {
 public int no;
 private String name;
 public Person (int no, String name) {
 this.no = no;
 this.name = name;
 }
 public String getName() {
 System.out.println(name);
 return name;
 }
}
输出结果为:
name1
name2
name3
name4
name5
name6
name7
name8
name9
name10
[name4, name5, name6, name7, name8, name9, name10]
复制代码


这是一个有 10,000 个元素的 Stream,但在 short-circuiting 操作 limit 和 skip 的作用下,管道中 map 操作指定的 getName() 方法的执行次数为 limit 所限定的 10 次,而最终返回结果在跳过前 3 个元素后只有后面 7 个返回。


有一种情况是 limit/skip 无法达到 short-circuiting 目的的,就是把它们放在 Stream 的排序操作后,原因跟 sorted 这个 intermediate 操作有关:此时系统并不知道 Stream 排序后的次序如何,所以 sorted 中的操作看上去就像完全没有被 limit 或者 skip 一样。


清单 17. limit 和 skip 对 sorted 后的运行次数无影响


List<Person> persons = new ArrayList();
 for (int i = 1; i <= 5; i++) {
 Person person = new Person(i, "name" + i);
 persons.add(person);
 }
List<Person> personList2 = persons.stream().sorted((p1, p2) -> 
p1.getName().compareTo(p2.getName())).limit(2).collect(Collectors.toList());
System.out.println(personList2);
复制代码


上面的示例对清单 13 做了微调,首先对 5 个元素的 Stream 排序,然后进行 limit 操作。输出结果为:


name2

name1

name3

name2

name4

name3

name5

name4


[stream.StreamDW Person@816f27d,stream.StreamDW P e r s o n @ 816 f 27 d , s t r e a m . S t r e a m D W Person@87aac27]


即虽然最后的返回元素数量是 2,但整个管道中的 sorted 表达式执行次数没有像前面例子相应减少。


最后有一点需要注意的是,对一个 parallel 的 Steam 管道来说,如果其元素是有序的,那么 limit 操作的成本会比较大,因为它的返回对象必须是前 n 个也有一样次序的元素。取而代之的策略是取消元素间的次序,或者不要用 parallel Stream。


sorted


对 Stream 的排序通过 sorted 进行,它比数组的排序更强之处在于你可以首先对 Stream 进行各类 map、filter、limit、skip 甚至 distinct 来减少元素数量后,再排序,这能帮助程序明显缩短执行时间。我们对清单 14 进行优化:


清单 18. 优化:排序前进行 limit 和 skip


点击查看代码清单


结果会简单很多:


name2

name1


[stream.StreamDW Person@6ce253f1,stream.StreamDW P e r s o n @ 6 c e 253 f 1 , s t r e a m . S t r e a m D W Person@53d8d10a]


当然,这种优化是有 business logic 上的局限性的:即不要求排序后再取值。


min/max/distinct


min 和 max 的功能也可以通过对 Stream 元素先排序,再 findFirst 来实现,但前者的性能会更好,为 O(n),而 sorted 的成本是 O(n log n)。同时它们作为特殊的 reduce 方法被独立出来也是因为求最大最小值是很常见的操作。


清单 19. 找出最长一行的长度


BufferedReader br = new BufferedReader(new FileReader("c:\\SUService.log"));
int longest = br.lines().
 mapToInt(String::length).
 max().
 getAsInt();
br.close();
System.out.println(longest);
复制代码


下面的例子则使用 distinct 来找出不重复的单词。


清单 20. 找出全文的单词,转小写,并排序


List<String> words = br.lines().
 flatMap(line -> Stream.of(line.split(" "))).
 filter(word -> word.length() > 0).
 map(String::toLowerCase).
 distinct().
 sorted().
 collect(Collectors.toList());
br.close();
System.out.println(words);
Match
复制代码


Stream 有三个 match 方法,从语义上说:


allMatch:Stream 中全部元素符合传入的 predicate,返回 true


anyMatch:Stream 中只要有一个元素符合传入的 predicate,返回 true


noneMatch:Stream 中没有一个元素符合传入的 predicate,返回 true


它们都不是要遍历全部元素才能返回结果。例如 allMatch 只要一个元素不满足条件,就 skip 剩下的所有元素,返回 false。对清单 13 中的 Person 类稍做修改,加入一个 age 属性和 getAge 方法。


清单 21. 使用 Match


List<Person> persons = new ArrayList();
persons.add(new Person(1, "name" + 1, 10));
persons.add(new Person(2, "name" + 2, 21));
persons.add(new Person(3, "name" + 3, 34));
persons.add(new Person(4, "name" + 4, 6));
persons.add(new Person(5, "name" + 5, 55));
boolean isAllAdult = persons.stream().
 allMatch(p -> p.getAge() > 18);
System.out.println("All are adult? " + isAllAdult);
boolean isThereAnyChild = persons.stream().
 anyMatch(p -> p.getAge() < 12);
System.out.println("Any child? " + isThereAnyChild);
复制代码


输出结果:


All are adult? false

Any child? true


进阶:自己生成流


Stream.generate


通过实现 Supplier 接口,你可以自己来控制流的生成。这种情形通常用于随机数、常量的 Stream,或者需要前后元素间维持着某种状态信息的 Stream。把 Supplier 实例传递给 Stream.generate() 生成的 Stream,默认是串行(相对 parallel 而言)但无序的(相对 ordered 而言)。由于它是无限的,在管道中,必须利用 limit 之类的操作限制

Stream 大小。


清单 22. 生成 10 个随机整数


Random seed = new Random();
Supplier<Integer> random = seed::nextInt;
Stream.generate(random).limit(10).forEach(System.out::println);
//Another way
IntStream.generate(() -> (int) (System.nanoTime() % 100)).
limit(10).forEach(System.out::println);
复制代码


Stream.generate() 还接受自己实现的 Supplier。例如在构造海量测试数据的时候,用某种自动的规则给每一个变量赋值;或者依据公式计算 Stream 的每个元素值。这些都是维持状态信息的情形。


清单 23. 自实现 Supplier


Stream.generate(new PersonSupplier()).
limit(10).
forEach(p -> System.out.println(p.getName() + ", " + p.getAge()));
private class PersonSupplier implements Supplier<Person> {
 private int index = 0;
 private Random random = new Random();
 @Override
 public Person get() {
 return new Person(index++, "StormTestUser" + index, random.nextInt(100));
 }
}
复制代码


输出结果:


StormTestUser1, 9

StormTestUser2, 12

StormTestUser3, 88

StormTestUser4, 51

StormTestUser5, 22

StormTestUser6, 28

StormTestUser7, 81

StormTestUser8, 51

StormTestUser9, 4

StormTestUser10, 76

Stream.iterate


iterate 跟 reduce 操作很像,接受一个种子值,和一个 UnaryOperator(例如 f)。然后种子值成为 Stream 的第一个元素,f(seed) 为第二个,f(f(seed)) 第三个,以此类推。


清单 24. 生成一个等差数列


Stream.iterate(0, n -> n + 3).limit(10). forEach(x -> System.out.print(x + " "));
复制代码


输出结果:


0 3 6 9 12 15 18 21 24 27
复制代码


与 Stream.generate 相仿,在 iterate 时候管道必须有 limit 这样的操作来限制 Stream 大小。


进阶:用 Collectors 来进行 reduction 操作


java.util.stream.Collectors 类的主要作用就是辅助进行各类有用的 reduction 操作,例如转变输出为 Collection,把 Stream 元素进行归组。


groupingBy/partitioningBy


清单 25. 按照年龄归组


Map<Integer, List<Person>> personGroups = Stream.generate(new PersonSupplier()).
 limit(100).
 collect(Collectors.groupingBy(Person::getAge));
Iterator it = personGroups.entrySet().iterator();
while (it.hasNext()) {
 Map.Entry<Integer, List<Person>> persons = (Map.Entry) it.next();
 System.out.println("Age " + persons.getKey() + " = " + persons.getValue().size());
}
复制代码


上面的 code,首先生成 100 人的信息,然后按照年龄归组,相同年龄的人放到同一个 list 中,可以看到如下的输出:


Age 0 = 2

Age 1 = 2

Age 5 = 2

Age 8 = 1

Age 9 = 1

Age 11 = 2

……


清单 26. 按照未成年人和成年人归组


Map<Boolean, List<Person>> children = Stream.generate(new PersonSupplier()).
 limit(100).
 collect(Collectors.partitioningBy(p -> p.getAge() < 18));
System.out.println("Children number: " + children.get(true).size());
System.out.println("Adult number: " + children.get(false).size());
复制代码


输出结果:


Children number: 23 
 Adult number: 77
复制代码


在使用条件“年龄小于 18”进行分组后可以看到,不到 18 岁的未成年人是一组,成年人是另外一组。partitioningBy 其实是一种特殊的 groupingBy,它依照条件测试的是否两种结果来构造返回的数据结构,get(true) 和 get(false) 能即为全部的元素对象。


文章仅供学习参考,来源:

www.ibm.com/developerwo…

目录
相关文章
|
1月前
|
存储 Java 数据挖掘
Java 8 新特性之 Stream API:函数式编程风格的数据处理范式
Java 8 引入的 Stream API 提供了一种新的数据处理方式,支持函数式编程风格,能够高效、简洁地处理集合数据,实现过滤、映射、聚合等操作。
56 6
|
1月前
|
Java API 开发者
Java中的Lambda表达式与Stream API的协同作用
在本文中,我们将探讨Java 8引入的Lambda表达式和Stream API如何改变我们处理集合和数组的方式。Lambda表达式提供了一种简洁的方法来表达代码块,而Stream API则允许我们对数据流进行高级操作,如过滤、映射和归约。通过结合使用这两种技术,我们可以以声明式的方式编写更简洁、更易于理解和维护的代码。本文将介绍Lambda表达式和Stream API的基本概念,并通过示例展示它们在实际项目中的应用。
|
2月前
|
安全 Java API
Java中的Lambda表达式与Stream API的高效结合####
探索Java编程中Lambda表达式与Stream API如何携手并进,提升数据处理效率,实现代码简洁性与功能性的双重飞跃。 ####
28 0
|
2月前
|
Java API 数据处理
探索Java中的Lambda表达式与Stream API
【10月更文挑战第22天】 在Java编程中,Lambda表达式和Stream API是两个强大的功能,它们极大地简化了代码的编写和提高了开发效率。本文将深入探讨这两个概念的基本用法、优势以及在实际项目中的应用案例,帮助读者更好地理解和运用这些现代Java特性。
|
3月前
|
存储 安全 Java
jdk21的外部函数和内存API(MemorySegment)(官方翻译)
本文介绍了JDK 21中引入的外部函数和内存API(MemorySegment),这些API使得Java程序能够更安全、高效地与JVM外部的代码和数据进行互操作,包括调用外部函数、访问外部内存,以及使用不同的Arena竞技场来分配和管理MemorySegment。
79 1
jdk21的外部函数和内存API(MemorySegment)(官方翻译)
|
4月前
|
SQL Java Linux
Java 8 API添加了一个新的抽象称为流Stream
Java 8 API添加了一个新的抽象称为流Stream
|
4月前
|
Java
安装JDK18没有JRE环境的解决办法
安装JDK18没有JRE环境的解决办法
396 3
|
10天前
|
NoSQL 关系型数据库 MySQL
Linux安装jdk、mysql、redis
Linux安装jdk、mysql、redis
101 7
|
5月前
|
Oracle Java 关系型数据库
Mac安装JDK1.8
Mac安装JDK1.8
798 4
|
5月前
|
Java 关系型数据库 MySQL
"解锁Java Web传奇之旅:从JDK1.8到Tomcat,再到MariaDB,一场跨越数据库的冒险安装盛宴,挑战你的技术极限!"
【8月更文挑战第19天】在Linux上搭建Java Web应用环境,需安装JDK 1.8、Tomcat及MariaDB。本指南详述了使用apt-get安装OpenJDK 1.8的方法,并验证其版本。接着下载与解压Tomcat至`/usr/local/`目录,并启动服务。最后,通过apt-get安装MariaDB,设置基本安全配置。完成这些步骤后,即可验证各组件的状态,为部署Java Web应用打下基础。
66 1