『三分钟学分析』Graveyard分析模型是真的牛X!(上)

简介: 在上篇品牌知名度实例的基础上,讲一个经典分析模型,对品牌知名度做更立体的分析。

模型背景


某品牌知名度,是指目标区域内,有多少人听过这个品牌。


之所以有这样的指标,是因为在人类基因里,深深印刻着熟悉度和好感度正相关的公式。


品牌要想成为品牌,产品要想成为畅销品,首先得让更多的人知道产品、品牌的存在,这是心智占领的第一步。


假设我们为A品牌调研了100个人,细究其品牌知名度,可以拆分成:


  • 第一提及品牌知名度。当问“联想到某个行业或者产品,你会想到什么品牌”,100个人有20个回答了A品牌,那第一提及品牌知名度就是 20 / 100 = 0.2


  • 提示前品牌知名度。追问“还能联想到什么品牌”,100个人又有30个提到了A,加上第一提及的20个人,提示前品牌知名度 = (20 + 30)/ 100 = 0.5


  • 提示后品牌知名度。拿出事先准备的品牌列表,依次询问是否听说过,又有40个人在这个环节想到了A品牌。提示后知名度 = (20 + 30 + 40) / 100 = 0.9


对于超级强势品牌来说,要的是强心智占领,所以更关注第一提及知名度。


常规分析会更关注提示前知名度。毕竟消费者不经提示自己说出来的品牌,才是他在决策时真正想得到的品牌。


初识Graveyard模型


Graveyard模型,脱胎于矩阵分析。模型把提示前品牌知名度和提示后品牌知名度纳入考量,以行业平均表现为纲,对品牌知名度做更立体的判断。


简单的说,Graveyard模型将提示前品牌知名度作为y轴,提示后知名度作为x轴,把我们拿到的品牌知名度数据用散点的形式映射到二维图上。


image.png


然后用线性回归对数据做拟合,得到一条贯穿的拟合线。这条拟合线,可以理解为整个行业的品牌,提示前知名度和提示后知名度的关系走向。


image.png


根据各品牌所处的位置,结合拟合线,就能从知名度的角度判断品牌是否健康。


模型实战


我们拿到了一批奶茶行业品牌知名度的样本数据,已经按提示前知名度和提示后知名度整理完毕。


数据调研于平行空间,最终解释权归数据不吹牛所有。


image.png


为了满足求知若渴的粉丝们练手需求,分别用Excel和Python来实践一下。


Excel版本


画个散点图看下分布:


image.png


横坐标是提示后知名度,纵坐标是提示前知名度。


拟合起来也非常简单,右键添加趋势线,默认就是线性拟合。


image.png


不得不承认,短平快的绘图、拟合、分析,Excel说第二,还真没人敢说第一。

相关文章
|
6月前
|
数据可视化
R语言大学城咖啡店消费问卷调查数据报告:信度分析、主成分分析可视化
R语言大学城咖啡店消费问卷调查数据报告:信度分析、主成分分析可视化
|
搜索推荐 数据挖掘 SEO
还在为浏览量焦虑吗?为何不用R语言来做归因分析找出痛点
还在为浏览量焦虑吗?为何不用R语言来做归因分析找出痛点
130 0
|
机器学习/深度学习 存储 人工智能
ChatGPT的各项超能力从哪儿来?万字拆解追溯技术路线图来了!(1)
ChatGPT的各项超能力从哪儿来?万字拆解追溯技术路线图来了!
183 0
|
机器学习/深度学习 存储 自然语言处理
ChatGPT的各项超能力从哪儿来?万字拆解追溯技术路线图来了!(2)
ChatGPT的各项超能力从哪儿来?万字拆解追溯技术路线图来了!
174 0
|
数据挖掘 定位技术 Python
用对线阶段数据分析和预测《英雄联盟》的游戏结果
用对线阶段数据分析和预测《英雄联盟》的游戏结果
524 0
用对线阶段数据分析和预测《英雄联盟》的游戏结果
|
机器学习/深度学习 数据采集 人工智能
『航班乘客满意度』场景数据分析建模与业务归因解释 ⛵
本文结合航空出行的场景,使用机器学习建模,详细分析了航班乘客满意度的影响因素:机上Wi-Fi服务、在线登机、机上娱乐质量、餐饮、座椅舒适度、机舱清洁度和腿部空间等。
448 0
『航班乘客满意度』场景数据分析建模与业务归因解释 ⛵
|
数据挖掘 测试技术 数据处理
数据分析实战 | A/B测试探寻哪种广告点击率更高?
数据分析实战 | A/B测试探寻哪种广告点击率更高?
数据分析实战 | A/B测试探寻哪种广告点击率更高?
|
Python
『三分钟学分析』Graveyard分析模型是真的牛X!(下)
在上篇品牌知名度实例的基础上,讲一个经典分析模型,对品牌知名度做更立体的分析。
336 0
『三分钟学分析』Graveyard分析模型是真的牛X!(下)
|
搜索推荐 数据可视化
舆情观察怎么做?
舆情观察作为一项系统性的工作,在舆情发展的不同阶段,其侧重点往往也不同。
|
数据挖掘 搜索推荐
带你读《广告数据定量分析:如何成为一位厉害的广告优化师》之二:广告数据分析中的统计学原理
这是一部面向初级广告优化师、渠道运营人员的广告数据分析和效果优化的实战指南。数据分析功底的深浅,决定了广告优化师能力水平的高低。这本书一方面告诉读者成为一名厉害的广告优化师需要掌握的数据分析技能,以及如何快速掌握这些技能;一方面又为读者总结了SEM广告、信息流广告、应用商店广告数据的分析方法论和效果优化的方法,以及多广告推广渠道的统筹优化。书中提供大量真实数据案例,助你提升广告数据分析的理论深度和业务水平。