题目描述
这是 LeetCode 上的 1218. 最长定差子序列 ,难度为 中等。
Tag : 「贪心」、「序列 DP」、「状态机 DP」、「哈希表」
给你一个整数数组 arr
和一个整数 difference
,请你找出并返回 arr
中最长等差子序列的长度,该子序列中相邻元素之间的差等于 difference
。
子序列 是指在不改变其余元素顺序的情况下,通过删除一些元素或不删除任何元素而从 arr
派生出来的序列。
示例 1:
输入:arr = [1,2,3,4], difference = 1 输出:4 解释:最长的等差子序列是 [1,2,3,4]。 复制代码
示例 2:
输入:arr = [1,3,5,7], difference = 1 输出:1 解释:最长的等差子序列是任意单个元素。 复制代码
示例 3:
输入:arr = [1,5,7,8,5,3,4,2,1], difference = -2 输出:4 解释:最长的等差子序列是 [7,5,3,1]。 复制代码
提示:
- 1 <= arr.length <= 10^51<=arr.length<=105
- -10^4 <= arr[i], difference <= 10^4−104<=arr[i],difference<=104
状态机序列 DP + 哈希表
定义 f[i][j]f[i][j](jj 非 00 即 11) 为代表考虑前 ii 个数,且第 ii 个数的选择情况为 jj 时,得到的最长定差子序列长度。
最终答案为 \max(f[n - 1][0], f[n - 1][1])max(f[n−1][0],f[n−1][1]),同时我们有显然的初始化条件 f[0][0] = 0f[0][0]=0 和 f[0][1] = 1f[0][1]=1。
不失一般性考虑 f[i][j]f[i][j] 如何转移:
- f[i][0]f[i][0]:明确了第 ii 个不选,那么此时最大长度为前一个位置的结果。即有:
f[i][0] = \max(f[i - 1][0], f[i - 1][1])f[i][0]=max(f[i−1][0],f[i−1][1])
- f[i][1]f[i][1]:明确了第ii个要选,此时进行分情况讨论:
- arr[i]arr[i] 独立成为一个子序列,此时有:f[i][1] = 1f[i][1]=1;
- arr[i]arr[i] 接在某一个数的后面,由于给定了差值 differencedifference,可直接算得上一位的值为 prev = arr[i] - differenceprev=arr[i]−difference,此时应当找到值为 prevprev,下标最大(下标小于 ii)的位置,然后从该位置转移过来,即有:f[i][1] = f[hash[prev]][1] + 1f[i][1]=f[hash[prev]][1]+1;
容易证明:如果存在多个位置的值为 prevprev,从中选择一个下标最大的位置(下标小于 ii)进行转移,结果相比于最优位置不会变差。因此我们「贪心」选择下标最大的位置(下标小于 ii)即可,这引导我们在转移过程中使用「哈希表」记录处理过的位置的值信息。
- 综上,我们有:
f[i][1] = \begin{cases} 1 & hash[arr[i] - difference] = -1 \\ f[hash[prev]][1] + 1 & hash[arr[i] - difference] \neq -1 \end{cases}f[i][1]={1f[hash[prev]][1]+1hash[arr[i]−difference]=−1hash[arr[i]−difference]=−1
代码(使用数组充当哈希表的代码在 P2P2):
class Solution { public int longestSubsequence(int[] arr, int d) { int n = arr.length; Map<Integer, Integer> map = new HashMap<>(); int[][] f = new int[n][2]; f[0][1] = 1; map.put(arr[0], 0); for (int i = 1; i < n; i++) { f[i][0] = Math.max(f[i - 1][0], f[i - 1][1]); f[i][1] = 1; int prev = arr[i] - d; if (map.containsKey(prev)) f[i][1] = Math.max(f[i][1], f[map.get(prev)][1] + 1); map.put(arr[i], i); } return Math.max(f[n - 1][0], f[n - 1][1]); } } 复制代码
class Solution { int N = 40009, M = N / 2; public int longestSubsequence(int[] arr, int d) { int n = arr.length; int[] hash = new int[N]; Arrays.fill(hash, -1); int[][] f = new int[n][2]; f[0][1] = 1; hash[arr[0] + M] = 0; for (int i = 1; i < n; i++) { f[i][0] = Math.max(f[i - 1][0], f[i - 1][1]); f[i][1] = 1; int prev = arr[i] - d; if (hash[prev + M] != -1) f[i][1] = Math.max(f[i][1], f[hash[prev + M]][1] + 1); hash[arr[i] + M] = i; } return Math.max(f[n - 1][0], f[n - 1][1]); } } 复制代码
- 时间复杂度:令 nn 为数组长度,共有 n * 2n∗2 个状态需要被计算,每个状态转移的复杂度为 O(1)O(1)。整体复杂度为 O(n)O(n)
- 空间复杂度:O(n)O(n)
优化状态定义
不难发现,我们多定义一维状态来区分某个位置的值是否被选择,目的是为了正确转移出第 ii 位被选择的情况。
事实上,利用哈希表本身我们就能轻松做到这一点。
我们调整状态定义为:f[i]f[i] 为考虑前 ii 个数(第 ii 个数必选)时,得到的最长定差子序列长度。
不失一般性考虑 f[i]f[i] 该如何转移,分情况讨论:
- arr[i]arr[i] 独立成为一个子序列,此时有:f[i] = 1f[i]=1;
- arr[i]arr[i] 接在某一个数的后面,由于给定了差值 differencedifference,可直接算得上一位的值为 prev = arr[i] - differenceprev=arr[i]−difference,此时应当找到 arr[j]arr[j] 为 prevprev 的最新位置(下标最大,同时满足 j < ij<i)当时的转移结果,在此基础上加一即可,即有:f[i] = hash[prev] + 1f[i]=hash[prev]+1;
综上,我们有(hashhash 初始化为 00):
f[i] = hash[prev] + 1f[i]=hash[prev]+1
代码(使用数组充当哈希表的代码在 P2P2):
class Solution { public int longestSubsequence(int[] arr, int d) { int ans = 1; Map<Integer, Integer> map = new HashMap<>(); for (int i : arr) { map.put(i, map.getOrDefault(i - d, 0) + 1); ans = Math.max(ans, map.get(i)); } return ans; } } 复制代码
class Solution { int N = 40009, M = N / 2; public int longestSubsequence(int[] arr, int d) { int ans = 1; int[] hash = new int[N]; for (int i : arr) { hash[i + M] = hash[i - d + M] + 1; ans = Math.max(ans, hash[i + M]); } return ans; } } 复制代码
- 时间复杂度:令 nn 为数组长度,共有 nn 个状态需要被计算,每个状态转移的复杂度为 O(1)O(1)。整体复杂度为 O(n)O(n)
- 空间复杂度:O(n)O(n)
最后
这是我们「刷穿 LeetCode」系列文章的第 No.1218
篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。
在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。
为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:github.com/SharingSour… 。
在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。