密码学系列之:1Password的加密基础PBKDF2

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
简介: 密码学系列之:1Password的加密基础PBKDF2

目录



简介


1password是一个非常优秀的密码管理软件,有了它你可以轻松对你的密码进行管理,从而不用再考虑密码泄露的问题,据1password官方介绍,它的底层使用的是PBKDF2算法对密码进行加密。


那么PBKDF2是何方神圣呢?它有什么优点可以让1password得以青睐呢?一起来看看吧。


PBKDF2和PBKDF1


PBKDF的全称是Password-Based Key Derivation Function,简单的说,PBKDF就是一个密码衍生的工具。既然有PBKDF2那么就肯定有PBKDF1,那么他们两个的区别是什么呢?

PBKDF2是PKCS系列的标准之一,具体来说他是PKCS#5的2.0版本,同样被作为RFC 2898发布。它是PBKDF1的替代品,为什么会替代PBKDF1呢?那是因为PBKDF1只能生成160bits长度的key,在计算机性能快速发展的今天,已经不能够满足我们的加密需要了。

所以被PBKDF2替换了。


在2017年发布的RFC 8018(PKCS #5 v2.1)中,是建议是用PBKDF2作为密码hashing的标准。


PBKDF2和PBKDF1主要是用来防止密码暴力破解的,所以在设计中加入了对算力的自动调整,从而抵御暴力破解的可能性。


PBKDF2的工作流程


PBKDF2实际上就是将伪散列函数PRF(pseudorandom function)应用到输入的密码、salt中,生成一个散列值,然后将这个散列值作为一个加密key,应用到后续的加密过程中,以此类推,将这个过程重复很多次,从而增加了密码破解的难度,这个过程也被称为是密码加强。


我们看一个标准的PBKDF2工作的流程图:


image.png


从图中可以看到,初始的密码跟salt经过PRF的操作生成了一个key,然后这个key作为下一次加密的输入和密码再次经过PRF操作,生成了后续的key,这样重复很多次,生成的key再做异或操作,生成了最终的T,然后把这些最终生成的T合并,生成最终的密码。


根据2000年的建议,一般来说这个遍历次数要达到1000次以上,才算是安全的。当然这个次数也会随着CPU计算能力的加强发生变化。这个次数可以根据安全性的要求自行调整。


有了遍历之后,为什么还需要加上salt呢?加上salt是为了防止对密码进行彩虹表攻击。


也就是说攻击者不能预选计算好特定密码的hash值,因为不能提前预测,所以安全性得以提高。标准salt的长度推荐是64bits,美国国家标准与技术研究所推荐的salt长度是128 bits。


详解PBKDF2的key生成流程


上面一小节,我们以一种通俗易懂的方式告诉大家,PBKDF2到底是怎么工作的。一般来说,了解到这一层也就够了,但是如果你想更加深入,了解PBKDF2的key生成的底层原理,那么还请关注这一小节。


我们上面介绍了PBKDF2是一个生成衍生key的函数,作为一个函数,那么就有输入和输出,我们先看下PBKDF2的定义:


DK = PBKDF2(PRF, Password, Salt, c, dkLen)


PBKDF2有5个函数,我们看下各个参数代表什么意思:


  • PRF 是一个伪随机散列函数,我们可以根据需要对其进行替换,比如替换成为HMAC函数。
  • Password 是主密码用来生成衍生key。
  • Salt是一个bits序列,用来对密码加盐。
  • c 是循环的次数。
  • dkLen 是生成的key要求的bits长度。
  • DK是最后生成的衍生key。


在上一节中,我们可以看到其实最后的衍生key是由好几部分组成的,上图中的每一个T都代表着衍生key的一部分,最后将这些T合并起来就得到了最终的衍生key,其公式如下:


DK = T1 + T2 + ⋯ + Tdklen/hlen
Ti = F(Password, Salt, c, i)


上面的F是c次遍历的异或链。其公式如下:


F(Password, Salt, c, i) = U1 ^ U2 ^ ⋯ ^ Uc


其中:


U1 = PRF(Password, Salt + INT_32_BE(i))
U2 = PRF(Password, U1)
Uc = PRF(Password, Uc−1)


HMAC密码碰撞


如果PBKDF2的PRF使用的是HMAC的话,那么将会发送一些很有意思的问题。对于HMAC来说,如果密码的长度大于HMAC可以接受的范围,那么该密码会首先被做一次hash运算,然后hash过后的字符串会被作为HMAC的输入。


我们举个例子,如果用户输入的密码是:


Password: plnlrtfpijpuhqylxbgqiiyipieyxvfsavzgxbbcfusqkozwpngsyejqlmjsytrmd


经过一次HMAC-SHA1运算之后,得到:


SHA1 (hex): 65426b585154667542717027635463617226672a


将其转换成为字符串得到:


SHA1 (ASCII): eBkXQTfuBqp'cTcar&g*


所以说,如果使用PBKDF2-HMAC-SHA1的加密方式的话,下面两个密码生成衍生key是一样的。


"plnlrtfpijpuhqylxbgqiiyipieyxvfsavzgxbbcfusqkozwpngsyejqlmjsytrmd"
    "eBkXQTfuBqp'cTcar&g*"


PBKDF2的缺点


虽然PBKDF2可以通过调节循环遍历的次数来提高密码破解的难度。但是可以为其研制特殊的处理器,只需要很少的RAM就可以对其进行破解。为此bcrypt 和 scrypt 等依赖于大量RAM的加密算法,这样就导致那些廉价的ASIC处理器无用武之地。


总结



以上就是PBKDF2的简单介绍,想要详细了解更多的朋友,可以参考我的其他关于密码学的文章。

相关文章
|
2月前
|
算法 安全 量子技术
量子计算与密码学:加密技术的新挑战
量子计算的崛起对密码学提出了新挑战。本文探讨了量子计算对现有加密技术的影响,分析了公钥密码、对称密码及通信安全所面临的威胁,并介绍了后量子加密算法等应对措施,展望了未来加密技术的发展趋势。
|
2月前
|
存储 安全 算法
密码学基础:加密技术如何保护我们的在线生活
密码学基础:加密技术如何保护我们的在线生活
69 7
|
3月前
|
算法 安全 量子技术
量子计算与密码学:加密技术的新挑战
【10月更文挑战第29天】本文探讨了量子计算对密码学的影响,分析了现有加密技术面临的挑战,并展望了未来的发展趋势。量子计算的快速发展对传统公钥加密算法(如RSA和ECC)构成巨大威胁,同时也催生了后量子加密算法和量子密钥分发等新技术。文章强调了多元化、标准化和国际合作在构建量子安全加密体系中的重要性。
|
5月前
|
安全 网络安全 量子技术
【骇入心灵的暗网迷雾与密码学的绝地反击】——揭秘网络空间中的致命漏洞与加密艺术的生死较量,一段关于光明与黑暗的数字史诗!
【8月更文挑战第7天】互联网是无限可能之地,亦暗藏危机。网络安全漏洞威胁隐私与安全,加密技术如坚盾保护我们。本文探索网络阴影及加密技术如何运作:对称加密快速但密钥易泄,非对称加密安全但速度较慢。通过示例展示两者差异,并展望加密技术未来发展,确保数字世界安全航行。
85 0
|
7月前
|
安全 算法 Java
密码学基础知识与加密算法解析
密码学基础知识与加密算法解析
|
6月前
|
算法 安全 网络安全
网络安全&密码学—python中的各种加密算法
数据加密是一种保护数据安全的技术,通过将数据(明文)转换为不易被未经授权的人理解的形式(密文),以防止数据泄露、篡改或滥用。加密后的数据(密文)可以通过解密过程恢复成原始数据(明文)。数据加密的核心是密码学,它是研究密码系统或通信安全的一门学科,包括密码编码学和密码分析学。
|
6月前
|
安全 算法 Java
密码学基础知识与加密算法解析
密码学基础知识与加密算法解析
|
8月前
|
存储 人工智能 安全
|
8月前
|
存储 算法 安全
密码学系列之九:密钥管理
密码学系列之九:密钥管理
1081 45
|
8月前
|
机器学习/深度学习 资源调度 安全
【现代密码学】笔记5--伪随机置换(分组加密)《introduction to modern cryphtography》
【现代密码学】笔记5--伪随机置换(分组加密)《introduction to modern cryphtography》
142 0