【小家java】Apache Commons-lang3提供的StopWatch执行时间监视器,以及Spring提供的StopWatch分析(上)

简介: 【小家java】Apache Commons-lang3提供的StopWatch执行时间监视器,以及Spring提供的StopWatch分析(上)

前言


编码过程中我们经常会希望得到一段代码(一个方法)的执行时间,本文将介绍两种时间监视器(秒表)来让你优雅的、灵活的处理这个问题。

Java源生方式


这种方式最最简单,最好理解,当然也是最为常用:我们自己书写。

例如:我们如果要统计一段代码的执行时间,经常会这么来写:


    public static void main(String[] args) {
        long startTime = System.currentTimeMillis();   //获取开始时间
        //函数主体代码
        //...
        long endTime = System.currentTimeMillis(); //获取结束时间
        System.out.println("程序运行时间: " + (endTime - startTime) + "ms");
    }


大多数时候我们使用ms来表示即可,但是这么写缺乏灵活性。倘若我们要展示成纳秒、秒、甚至分钟,还得我们自己处理(把毫秒值拿来进行转换~ )


当然可能到了JDK8以后,我们这么做能变得稍微灵活一些:可以这么处理:


    public static void main(String[] args) {
        Instant start = Instant.now();
        //doSomething();
        Instant end = Instant.now();
        Duration duration = Duration.between(start, end);
        System.out.println("millis = " + duration.toMillis());
    }


这个比上面灵活度强一些。但也还是有一定的缺点:步骤稍显复杂,总体上还是不够优雅,也不是那么的灵活。


那么本文针对此问题介绍一个工具:StopWatch执行时间监视器。借助它来统计我们程序的执行时间,带给非常多的方便和优雅。


StopWatch需要依赖额外的Jar:commons-lang3或者spring-core,但因这两个Jar是Java开发中都必导的,因此依赖兼容性方面可以忽略


StopWatch有很多开源的框架都有提供类似的功能:比如Apache的commons-lang3,当然还有Spring framwork自己提供的,本文将针对此俩分别做介绍~


Commons-lang3的StopWatch


Apache提供的这个任务执行监视器功能丰富强大(比Spring的强大),灵活性强,如下经典实用案例:


    public static void main(String[] args) throws Exception {
        StopWatch watch = StopWatch.createStarted(); //创建后立即start,常用
        //StopWatch watch = new StopWatch();
        //watch.start();
        Thread.sleep(1000);
        System.out.println("统计从开始到现在运行时间:" + watch.getTime() + "ms"); //1000ms
        Thread.sleep(1000);
        watch.split();
        System.out.println("从start到此刻为止的时间:" + watch.getTime());
        System.out.println("从开始到第一个切入点运行时间:" + watch.getSplitTime()); //2245
        Thread.sleep(1000);
        watch.split();
        System.out.println("从开始到第二个切入点运行时间:" + watch.getSplitTime());
        watch.reset(); //重置后必须使用start方法
        watch.start();
        Thread.sleep(1000);
        System.out.println("重新开始后到当前运行时间是:" + watch.getTime()); //1000
        watch.suspend(); //暂停
        Thread.sleep(6000); //模拟暂停6秒钟
        watch.resume(); //上面suspend,这里要想重新统计,需要恢复一下
        System.out.println("恢复后执行的时间是:" + watch.getTime()); //1000  注意此时这个值还是1000
        watch.stop();
        System.out.println("花费的时间》》" + watch.getTime() + "ms"); //1002ms
        System.out.println("花费的时间》》" + watch.getTime(TimeUnit.SECONDS) + "s"); //1s 可以直接转成s
    }


打印结果:


统计从开始到现在运行时间:1007ms
从start到此刻为止的时间:2008
从开始到第一个切入点运行时间:2008
从开始到第二个切入点运行时间:3009
重新开始后到当前运行时间是:1000
恢复后执行的时间是:1000
花费的时间》》1001ms
花费的时间》》1s


如上就是StopWatch的基本使用方法,足以见到了它的强大吧,当然使用起来复杂度也是提升了些的。


核心原理解释


原理相对简单,简单看看源码便知:

// @since 2.0
public class StopWatch {
  // @since 3.5  这个静态方法出现得稍微晚点哦~
    public static StopWatch createStarted() {
        final StopWatch sw = new StopWatch();
        sw.start();
        return sw;
    }
  // 这些成员变量是实现的核心~~~~~~~~~~~~~~
    private State runningState = State.UNSTARTED;
    private SplitState splitState = SplitState.UNSPLIT;
    private long startTime;
  // 思考:为何有了nonaTime这里还得记录一个Millis Time呢???
  // 因为nanoTime只能拿来计算差值(耗时) 但是getStartTime()这个老API还得靠MillsTime~~~
    private long startTimeMillis;
    private long stopTime;
    // 可见:start方法可不是能够多次调用的哦~~和状态是有关的
    public void start() {
        if (this.runningState == State.STOPPED) {
            throw new IllegalStateException("Stopwatch must be reset before being restarted. ");
        }
        if (this.runningState != State.UNSTARTED) {
            throw new IllegalStateException("Stopwatch already started. ");
        }
        this.startTime = System.nanoTime();
        this.startTimeMillis = System.currentTimeMillis();
        this.runningState = State.RUNNING;
    }
  // 停表时,最重要的是记录下了stopTime 的值~~~然后标记状态
    public void stop() {
        if (this.runningState != State.RUNNING && this.runningState != State.SUSPENDED) {
            throw new IllegalStateException("Stopwatch is not running. ");
        }
        if (this.runningState == State.RUNNING) {
            this.stopTime = System.nanoTime();
        }
        this.runningState = State.STOPPED;
    }
  // 状态变为非开始状态...
    public void reset() {
        this.runningState = State.UNSTARTED;
        this.splitState = SplitState.UNSPLIT;
    }
  // 暂停:stopTime 也给了一个值
    public void suspend() {
        if (this.runningState != State.RUNNING) {
            throw new IllegalStateException("Stopwatch must be running to suspend. ");
        }
        this.stopTime = System.nanoTime();
        this.runningState = State.SUSPENDED;
    }
  // 这两个方法是获取差值的
    public long getTime() {
        return getNanoTime() / NANO_2_MILLIS;
    }
    // @since 3.5
    public long getTime(final TimeUnit timeUnit) {
        return timeUnit.convert(getNanoTime(), TimeUnit.NANOSECONDS);
    }
  // @since 2.4 老API  这叫获取启动的时间(啥时候启动的)
    public long getStartTime() {
        if (this.runningState == State.UNSTARTED) {
            throw new IllegalStateException("Stopwatch has not been started");
        }
        // System.nanoTime is for elapsed time
        return this.startTimeMillis;
    }
}


可以看到原理是很简单的,无非就是包装了暂停、回复、split等功能嘛

相关文章
|
5月前
|
安全 Java 应用服务中间件
Spring Boot + Java 21:内存减少 60%,启动速度提高 30% — 零代码
通过调整三个JVM和Spring Boot配置开关,无需重写代码即可显著优化Java应用性能:内存减少60%,启动速度提升30%。适用于所有在JVM上运行API的生产团队,低成本实现高效能。
651 3
|
6月前
|
安全 Java 编译器
new出来的对象,不一定在堆上?聊聊Java虚拟机的优化技术:逃逸分析
逃逸分析是一种静态程序分析技术,用于判断对象的可见性与生命周期。它帮助即时编译器优化内存使用、降低同步开销。根据对象是否逃逸出方法或线程,分析结果分为未逃逸、方法逃逸和线程逃逸三种。基于分析结果,编译器可进行同步锁消除、标量替换和栈上分配等优化,从而提升程序性能。尽管逃逸分析计算复杂度较高,但其在热点代码中的应用为Java虚拟机带来了显著的优化效果。
207 4
|
4月前
|
安全 前端开发 Java
《深入理解Spring》:现代Java开发的核心框架
Spring自2003年诞生以来,已成为Java企业级开发的基石,凭借IoC、AOP、声明式编程等核心特性,极大简化了开发复杂度。本系列将深入解析Spring框架核心原理及Spring Boot、Cloud、Security等生态组件,助力开发者构建高效、可扩展的应用体系。(238字)
|
4月前
|
消息中间件 缓存 Java
Spring框架优化:提高Java应用的性能与适应性
以上方法均旨在综合考虑Java Spring 应该程序设计原则, 数据库交互, 编码实践和系统架构布局等多角度因素, 旨在达到高效稳定运转目标同时也易于未来扩展.
290 8
|
4月前
|
存储 Java Go
【Java】(3)8种基本数据类型的分析、数据类型转换规则、转义字符的列举
牢记类型转换规则在脑海中将编译和运行两个阶段分开,这是两个不同的阶段,不要弄混!
276 2
|
10月前
|
监控 Java Unix
6个Java 工具,轻松分析定位 JVM 问题 !
本文介绍了如何使用 JDK 自带工具查看和分析 JVM 的运行情况。通过编写一段测试代码(启动 10 个死循环线程,分配大量内存),结合常用工具如 `jps`、`jinfo`、`jstat`、`jstack`、`jvisualvm` 和 `jcmd` 等,详细展示了 JVM 参数配置、内存使用、线程状态及 GC 情况的监控方法。同时指出了一些常见问题,例如参数设置错误导致的内存异常,并通过实例说明了如何排查和解决。最后附上了官方文档链接,方便进一步学习。
1670 4
|
4月前
|
Java Go 开发工具
【Java】(9)抽象类、接口、内部的运用与作用分析,枚举类型的使用
抽象类必须使用abstract修饰符来修饰,抽象方法也必须使用abstract修饰符来修饰,抽象方法不能有方法体。抽象类不能被实例化,无法使用new关键字来调用抽象类的构造器创建抽象类的实例。抽象类可以包含成员变量、方法(普通方法和抽象方法都可以)、构造器、初始化块、内部类(接 口、枚举)5种成分。抽象类的构造器不能用于创建实例,主要是用于被其子类调用。抽象类中不一定包含抽象方法,但是有抽象方法的类必定是抽象类abstract static不能同时修饰一个方法。
263 1
|
5月前
|
数据采集 存储 弹性计算
高并发Java爬虫的瓶颈分析与动态线程优化方案
高并发Java爬虫的瓶颈分析与动态线程优化方案
|
6月前
|
机器学习/深度学习 安全 Java
Java 大视界 -- Java 大数据在智能金融反洗钱监测与交易异常分析中的应用(224)
本文探讨 Java 大数据在智能金融反洗钱监测与交易异常分析中的应用,介绍其在数据处理、机器学习建模、实战案例及安全隐私等方面的技术方案与挑战,展现 Java 在金融风控中的强大能力。

热门文章

最新文章

推荐镜像

更多