JavaScript 中的二叉树以及二叉搜索树的实现及应用

简介: 接下来让我们一起来探讨js数据结构中的树。这里的树类比现实生活中的树,有树干,树枝,在程序中树是一种数据结构,对于存储需要快速查找的数据非有用,它是一种分层数据的抽象模型。一个树结构包含一系列存在父子关系的节点。每个节点都有一个父节点以及零个或多个子节点。如下所以为一个树结构

接下来让我们一起来探讨js数据结构中的树。这里的树类比现实生活中的树,有树干,树枝,在程序中树是一种数据结构,对于存储需要快速查找的数据非有用,它是一种分层数据的抽象模型。一个树结构包含一系列存在父子关系的节点。每个节点都有一个父节点以及零个或多个子节点。如下所以为一个树结构:)



和树相关的概念:1.子树:由节点和他的后代构成,如上图标示处。2.深度:节点的深度取决于它祖节点的数量,比如节点5有2个祖节点,他的深度为2。3.高度:树的高度取决于所有节点深度的最大值。


二叉树和二叉搜索树介绍


二叉树中的节点最多只能有2个子节点,一个是左侧子节点,一个是右侧子节点,这样定义的好处是有利于我们写出更高效的插入,查找,删除节点的算法。


二叉搜索树是二叉树的一种,但是它只允许你在左侧子节点存储比父节点小的值,但在右侧节点存储比父节点大的值。接下来我们将按照这个思路去实现一个二叉搜索树。



1. 创建BinarySearchTree类


这里我们将使用构造函数去创建一个类:


function BinarySearchTree(){
    // 用于创建节点的类
    let Node = function(key) {
        this.key = key;
        this.left = null;
        this.right = null;
    }
    // 根节点
    let root = null;
}

我们将使用和链表类似的指针方式去表示节点之间的关系,如果不了解链表,请看我后序的文章《如何实现单向链表和双向链表》。


2.插入一个键

// 插入一个键
this.insert = function(key) {
    let newNode = new Node(key);
    root === null ? (root = newNode) : (insertNode(root, newNode))
}

向树中插入一个新的节点主要有以下三部分:1.创建新节点的Node类实例 --> 2.判断插入操作是否为根节点,是根节点就将其指向根节点 --> 3.将节点加入非根节点的其他位置。


insertNode的具体实现如下:

function insertNode(node, newNode){
    if(newNode.key < node.key) {
        node.left === null ? (node.left = newNode) : (insertNode(node.left, newNode))
    }else {
        node.right === null ? (node.right = newNode) : (insertNode(node.right, newNode))
    }
}

这里我们用到递归,接下来要实现的search,del等都会大量使用递归,所以说不了解的可以先自行学习了解。我们创建一个二叉树实例,来插入一个键:

let tree = new BinarySearchTree();
tree.insert(20);
tree.insert(21);
tree.insert(520);
tree.insert(521);

插入的结构会按照二叉搜索树的规则去插入,结构类似于上文的第一个树图。


树的遍历


访问树的所有节点有三种遍历方式:中序,先序和后序。


  • 中序遍历:以从最小到最大的顺序访问所有节点


  • 先序遍历:以优先于后代节点的顺序访问每个节点


  • 后序遍历:先访问节点的后代节点再访问节点本身


根据以上的介绍,我们可以有以下的实现代码。


  1. 中序排序


this.inOrderTraverse = function(cb){
    inOrderTraverseNode(root, cb);
}
// 辅助函数
function inOrderTraverseNode(node, cb){
    if(node !== null){
        inOrderTraverseNode(node.left, cb);
        cb(node.key);
        inOrderTraverseNode(node.right, cb);
    }
}

使用中序遍历可以实现对树进行从小到大排序的功能。


  1. 先序排序
// 先序排序 --- 优先于后代节点的顺序访问每个节点
   this.preOrderTraverse = function(cb) {
     preOrderTraverseNode(root, cb);
   }
   // 先序排序辅助方法
   function preOrderTraverseNode(node, cb) {
     if(node !== null) {
       cb(node.key);
       preOrderTraverseNode(node.left, cb);
       preOrderTraverseNode(node.right, cb);
     }
   }

使用先序排序可以实现结构化输出的功能。


  1. 后序排序
// 后续遍历 --- 先访问后代节点,再访问节点本身
   this.postOrderTraverse = function(cb) {
     postOrderTraverseNode(root, cb);
   }
   // 后续遍历辅助方法
   function postOrderTraverseNode(node, cb) {
     if(node !== null){
       postOrderTraverseNode(node.left, cb);
       postOrderTraverseNode(node.right, cb);
       cb(node.key);
     }
   }

后序遍历可以用于计算有层级关系的所有元素的大小。


搜索树中的值


在树中有三种经常执行的搜索类型:最大值,最小值,特定的值。


  1. 最小值


最小值通过定义可以知道即是左侧树的最底端的节点,具体实现代码如下:


// 最小值
   this.min = function(){
     return minNode(root)
   }
    function minNode(node) {
     if(node) {
       while(node && node.left !== null){
         node = node.left;
       }
       return node.key
     }
     return null
   }

相似的,实现最大值的方法如下:

// 最大值
   this.max = function() {
     return maxNode(root)
   }
   function maxNode(node) {
     if(node){
       while(node && node.right !== null){
         node = node.right;
       }
       return node.key
     }
     return null
   }

2.搜索一个特定的值

// 搜索树中某个值
this.search = function(key) {
    return searchNode(root, key)
}
// 搜索辅助方法
function searchNode(node, key){
    if(node === null) {
        return false
    }
    if(key < node.key) {
        return searchNode(node.left, key)
    } else if(key > node.key) {
        return searchNode(node.right, key)
    }else {
        return true
    }
}
  1. 移除一个节点
this.remove = function(key){
    root = removeNode(root, key);
}
// 发现最小节点
function findMinNode(node) {
    if(node) {
    while(node && node.left !== null){
        node = node.left;
    }
    return node
    }
    return null
}
// 移除节点辅助方法
function removeNode(node, key) {
    if(node === null) {
    return null
    }
    if(key < node.key){
    node.left = removeNode(node.left, key);
    return node
    } else if( key > node.key){
    node.right = removeNode(node.right, key);
    return node
    } else {
    // 一个页节点
    if(node.left === null && node.right === null) {
        node = null;
        return node
    }
    // 只有一个子节点的节点
    if(node.left === null) {
        node = node.right;
        return node
    }else if(node.right === null) {
        node = node.left;
        return node
    }
    // 有两个子节点的节点
    let aux = findMinNode(node.right);
    node.key = aux.key;
    node.right = removeNode(node.right, aux.key);
    return node
    }
}

删除节点需要考虑的情况比较多,这里我们会使用和min类似的实现去写一个发现最小节点的函数,当要删除的节点有两个子节点时,我们要将当前要删除的节点替换为子节点中最大的一个节点的值,然后将这个子节点删除。


至此,一个二叉搜索树已经实现,但是还存在一个问题,如果树的一遍非常深,将会存在一定的性能问题,为了解决这个问题,我们可以利用AVL树,一种自平衡二叉树,也就是说任何一个节点的左右两侧子树的高度之差最多为1。



目录
相关文章
|
1月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
297 2
|
1月前
|
JavaScript 前端开发 API
探索后端技术:Node.js的优势和实际应用
【10月更文挑战第6天】 在当今数字化时代,后端开发是任何成功软件应用的关键组成部分。本文将深入探讨一种流行的后端技术——Node.js,通过分析其核心优势和实际应用案例,揭示其在现代软件开发中的重要性和潜力。
129 2
|
3天前
|
存储 缓存 JavaScript
如何优化Node.js应用的内存使用以提高性能?
通过以上多种方法的综合运用,可以有效地优化 Node.js 应用的内存使用,提高性能,提升用户体验。同时,不断关注内存管理的最新技术和最佳实践,持续改进应用的性能表现。
|
22天前
|
数据可视化 JavaScript 前端开发
数据可视化进阶:D3.js在复杂数据可视化中的应用
【10月更文挑战第26天】数据可视化是将数据以图形、图表等形式呈现的过程,帮助我们理解数据和揭示趋势。D3.js(Data-Driven Documents)是一个基于JavaScript的库,使用HTML、SVG和CSS创建动态、交互式的数据可视化。它通过数据驱动文档的方式,将数据与DOM元素关联,提供高度的灵活性和定制性,适用于复杂数据的可视化任务。 示例代码展示了如何使用D3.js创建一个简单的柱状图,展示了其基本用法。D3.js的链式调用和回调函数机制使代码简洁易懂,支持复杂的布局和交互逻辑。
62 3
|
1月前
|
机器学习/深度学习 自然语言处理 JavaScript
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
在信息论、机器学习和统计学领域中,KL散度(Kullback-Leibler散度)是量化概率分布差异的关键概念。本文深入探讨了KL散度及其相关概念,包括Jensen-Shannon散度和Renyi散度。KL散度用于衡量两个概率分布之间的差异,而Jensen-Shannon散度则提供了一种对称的度量方式。Renyi散度通过可调参数α,提供了更灵活的散度度量。这些概念不仅在理论研究中至关重要,在实际应用中也广泛用于数据压缩、变分自编码器、强化学习等领域。通过分析电子商务中的数据漂移实例,展示了这些散度指标在捕捉数据分布变化方面的独特优势,为企业提供了数据驱动的决策支持。
72 2
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
|
27天前
|
JavaScript 前端开发 开发者
探索JavaScript原型链:深入理解与实战应用
【10月更文挑战第21天】探索JavaScript原型链:深入理解与实战应用
29 1
|
1月前
|
JavaScript 前端开发 API
Vue.js:打造高效前端应用的最佳选择
【10月更文挑战第9天】Vue.js:打造高效前端应用的最佳选择
20 2
|
1月前
|
设计模式 JavaScript 前端开发
探索JavaScript中的闭包:从基础概念到实际应用
在本文中,我们将深入探讨JavaScript中的一个重要概念——闭包。闭包是一种强大的编程工具,它允许函数记住并访问其所在作用域的变量,即使该函数在其作用域之外被调用。通过详细解析闭包的定义、创建方法以及实际应用场景,本文旨在帮助读者不仅理解闭包的理论概念,还能在实际开发中灵活运用这一技巧。
|
1月前
|
缓存 JavaScript 前端开发
深入了解JavaScript的闭包:概念与应用
【10月更文挑战第8天】深入了解JavaScript的闭包:概念与应用
|
19天前
|
前端开发 JavaScript
JavaScript新纪元:ES6+特性深度解析与实战应用
【10月更文挑战第29天】本文深入解析ES6+的核心特性,包括箭头函数、模板字符串、解构赋值、Promise、模块化和类等,结合实战应用,展示如何利用这些新特性编写更加高效和优雅的代码。
39 0