Google Earth Engine——美国1950-2099年降水、气温含预测数据集(1km)分辨率

简介: Google Earth Engine——美国1950-2099年降水、气温含预测数据集(1km)分辨率

The NASA NEX-DCP30 dataset is comprised of downscaled climate scenarios for the conterminous United States that are derived from the General Circulation Model (GCM) runs conducted under the Coupled Model Intercomparison Project Phase 5 (CMIP5, see Taylor et al. 2012) and across the four greenhouse gas emissions scenarios known as Representative Concentration Pathways (RCPs, see Meinshausen et al. 2011) developed for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5). The purpose of these datasets is to provide a set of high resolution, bias-corrected climate change projections that can be used to evaluate climate change impacts on processes that are sensitive to finer-scale climate gradients and the effects of local topography on climate conditions.

The dataset contains monthly projections covering the periods from 1950 through 2005 (Retrospective Run) and from 2006 to 2099 (Prospective Run). It includes ensemble statistics calculated for each RCP from all model runs available for the pr, tasmin, and tasmax bands.

NEX-DCP30 was prepared by the Climate Analytics Group and NASA Ames Research Center using the NASA Earth Exchange, and distributed by the NASA Center for Climate Simulation (NCCS).


NASA NEX-DCP30数据集由美国本土的降尺度气候情景组成,这些情景来自于在耦合模型相互比较项目第五阶段(CMIP5,见Taylor等人,2012年)下进行的一般循环模型(GCM)运行,以及为政府间气候变化专门委员会第五次评估报告(IPCC AR5)制定的四种温室气体排放情景,即代表浓度路径(RCPs,见Meinshausen等人,2011)。这些数据集的目的是提供一套高分辨率的、经过偏差校正的气候变化预测,可用于评估气候变化对那些对更精细的气候梯度和当地地形对气候条件影响敏感的过程的影响。

该数据集包含从1950年到2005年(回顾性运行)和从2006年到2099年(展望性运行)的每月预测。它包括来自33个模型的降尺度预测。并非每个情景都包含每个模型的预测。

NEX-DCP30由气候分析小组和NASA艾姆斯研究中心使用NASA地球交换系统编制,并由NASA气候模拟中心(NCCS)分发。

Dataset Availability

1950-01-01T00:00:00 - 2099-12-31T00:00:00

Dataset Provider

NASA / CSU

Collection Snippet

ee.ImageCollection("NASA/NEX-DCP30_ENSEMBLE_STATS")

Resolution

927.67 meters

Bands Table

Name Description Min* Max* Units
pr_mean Monthly mean of the daily precipitation rate at surface; includes both liquid and solid phases from all types of clouds (both large-scale and convective) 0 0.0006 kg/(m^2*s)
pr_quartile25 25th quartile of the precipitation at surface; includes both liquid and solid phases from all types of clouds (both large-scale and convective) 0 0.0004 kg/(m^2*s)
pr_median Median of precipitation at surface; includes both liquid and solid phases from all types of clouds (both large-scale and convective) 0 0.0006 kg/(m^2*s)
pr_quartile75 75th quartile of the precipitation at surface; includes both liquid and solid phases from all types of clouds (both large-scale and convective) 0 0.0008 kg/(m^2*s)
tasmin_mean Monthly mean of the daily-minimum near-surface air temperature 247.58 311.09 K
tasmin_quartile25 25th quartile the daily-minimum near-surface air temperature 243.28 310.06 K
tasmin_median Median of the daily-minimum near-surface air temperature 246.87 311.12 K
tasmin_quartile75 75th quartile of the daily-minimum near-surface air temperature 248.42 312.59 K
tasmax_mean Monthly mean of the daily-maximum near-surface air temperature 258.47 326.48 K
tasmax_quartile25 25th quartile of the daily-maximum near-surface air temperature 256.13 325.52 K
tasmax_median Median of the daily-maximum near-surface air temperature 257.89 326.28 K
tasmax_quartile75 75th quartile of the daily-maximum near-surface air temperature 260.2 328.2 K


* = Values are estimated

影像属性:

Name Type Description
scenario String Name of the CMIP5 scenario. It is one of: 'historical', 'rcp26', 'rcp45', 'rcp60', 'rcp85', where 'historical' designates retrospective model runs (pre-2006).
month Double Calendar month


引用:

Thrasher, B., J. Xiong, W. Wang, F. Melton, A. Michaelis and R. Nemani (2013), Downscaled Climate Projections Suitable for Resource Management, Eos Trans. AGU, 94(37), 321. doi:10.1002/2013EO370002

代码:

var dataset = ee.ImageCollection('NASA/NEX-DCP30_ENSEMBLE_STATS')
                  .filter(ee.Filter.date('2018-07-01', '2018-07-30'));
var monthlyMeanMinimumAirTemperature = dataset.select('tasmin_mean');
var monthlyMeanMinimumAirTemperatureVis = {
  min: 247.0,
  max: 311.0,
  palette: ['blue', 'purple', 'cyan', 'green', 'yellow', 'red'],
};
Map.setCenter(-115.356, 38.686, 5);
Map.addLayer(
    monthlyMeanMinimumAirTemperature, monthlyMeanMinimumAirTemperatureVis,
    'Monthly Mean Minimum Air Temperature');


相关文章
|
6月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2345 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
217 0
|
6月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
525 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
6月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
107 0
|
6月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
84 0
|
6月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
126 0
|
6月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
74 0
|
6月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
252 0
|
6月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
118 0
|
6月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
120 0