Google Earth Engine ——全球陆地数据同化系统(GLDAS)摄取了卫星和地面观测数据产品大气分析场、降水场和辐射场数据集

简介: Google Earth Engine ——全球陆地数据同化系统(GLDAS)摄取了卫星和地面观测数据产品大气分析场、降水场和辐射场数据集

Global Land Data Assimilation System (GLDAS) ingests satellite and ground-based observational data products. Using advanced land surface modeling and data assimilation techniques, it generates optimal fields of land surface states and fluxes.

GLDAS-2.1 is one of two components of the GLDAS Version 2 (GLDAS-2) dataset, the second being GLDAS-2.0. GLDAS-2.1 is analogous to GLDAS-1 product stream, with upgraded models forced by a combination of GDAS, disaggregated GPCP, and AGRMET radiation data sets.

The GLDAS-2.1 simulation started on January 1, 2000 using the conditions from the GLDAS-2.0 simulation. This simulation was forced with National Oceanic and Atmospheric Administration (NOAA)/Global Data Assimilation System (GDAS) atmospheric analysis fields (Derber et al., 1991), the disaggregated Global Precipitation Climatology Project (GPCP) precipitation fields (Adler et al., 2003), and the Air Force Weather Agency's AGRicultural METeorological modeling system (AGRMET) radiation fields which became available for March 1, 2001 onwards.

Documentation:

Provider's Note: the names with extension _tavg are variables averaged over the past 3-hours, the names with extension '_acc' are variables accumulated over the past 3-hours, the names with extension '_inst' are instantaneous variables, and the names with '_f' are forcing variables.


全球陆地数据同化系统(GLDAS)摄取了卫星和地面观测数据产品。它使用先进的陆地表面建模和数据同化技术,生成陆地表面状态和通量的最佳场。

GLDAS-2.1是GLDAS第二版(GLDAS-2)数据集的两个组成部分之一,另一个是GLDAS-2.0。GLDAS-2.1类似于GLDAS-1产品流,升级后的模型由GDAS、分解的GPCP和AGRMET辐射数据集组合而成。

GLDAS-2.1模拟于2000年1月1日开始,使用GLDAS-2.0模拟的条件。该模拟使用美国国家海洋和大气管理局(NOAA)/全球数据同化系统(GDAS)的大气分析场(Derber等人,1991年)、分解的全球降水气候学项目(GPCP)降水场(Adler等人,2003年)和空军气象局的AGRicultural METeorological建模系统(AGRMET)辐射场(2001年3月1日起可用)强制进行。

提供者注:扩展名为_tavg的是过去3小时的平均变量,扩展名为'_acc'的是过去3小时的累积变量,扩展名为'_inst'的是瞬时变量,扩展名为'_f'的是强制变量。

Dataset Availability

2000-01-01T00:00:00 - 2021-08-25T00:00:00

Dataset Provider

NASA GES DISC at NASA Goddard Space Flight Center

Collection Snippet

ee.ImageCollection("NASA/GLDAS/V021/NOAH/G025/T3H")

Resolution

27830 meters

Bands Table

Name Description Min* Max* Units
Albedo_inst Albedo 4.99 82.25 %
AvgSurfT_inst Average surface skin temperature 187.48 1323.35 K
CanopInt_inst Plant canopy surface water 0 0.5 kg/m^2
ECanop_tavg Canopy water evaporation 0 1273.66 W/m^2
ESoil_tavg Direct evaporation from bare soil 0 2275.63 W/m^2
Evap_tavg Evapotranspiration 0 0.002 kg/m^2/s
LWdown_f_tavg Downward long-wave radiation flux 26.85 600.9 W/m^2
Lwnet_tavg Net long-wave radiation flux -13792.7 196.97 W/m^2
PotEvap_tavg Potential evaporation rate -227.75 18977.87 W/m^2
Psurf_f_inst Pressure 44063.08 108343.92 Pa
Qair_f_inst Specific humidity -0.02 0.07 kg/kg
Qg_tavg Heat flux -552.64 1538.41 W/m^2
Qh_tavg Sensible heat net flux -1005.15 18190.63 W/m^2
Qle_tavg Latent heat net flux -227.75 5072.25 W/m^2
Qs_acc Storm surface runoff 0 170.93 kg/m^2
Qsb_acc Baseflow-groundwater runoff 0 50.6 kg/m^2
Qsm_acc Snow melt 0 42.87 kg/m^2
Rainf_f_tavg Total precipitation rate 0 0.01 kg/m^2/s
Rainf_tavg Rain precipitation rate 0 0.01 kg/m^2/s
RootMoist_inst Root zone soil moisture 2 949.6 kg/m^2
SWE_inst Snow depth water equivalent 0 120786.71 kg/m^2
SWdown_f_tavg Downward short-wave radiation flux -56.93 30462.81 W/m^2
SnowDepth_inst Snow depth 0 301.96 m
Snowf_tavg Snow precipitation rate 0 0.009 kg/m^2/s
SoilMoi0_10cm_inst Soil moisture 1.99 47.59 kg/m^2
SoilMoi10_40cm_inst Soil moisture 5.99 142.8 kg/m^2
SoilMoi40_100cm_inst Soil moisture 11.99 285.6 kg/m^2
SoilMoi100_200cm_inst Soil moisture 20 476 kg/m^2
SoilTMP0_10cm_inst Soil temperature 221.98 377.5 K
SoilTMP10_40cm_inst Soil temperature 227.43 319.44 K
SoilTMP40_100cm_inst Soil temperature 232.97 316.2 K
SoilTMP100_200cm_inst Soil temperature 238.52 314.11 K
Swnet_tavg Net short wave radiation flux -48.96 23741.33 W/m^2
Tair_f_inst Air temperature 206.8 327.66 K
Tveg_tavg Transpiration 0 3455.14 W/m^2
Wind_f_inst Wind speed 0 57.7 m/s

* = Values are estimated

Name Type Description
end_hour Double End hour
start_hour Double Start hour

使用说明:

Distribution of data from the Goddard Earth Sciences Data and Information Services Center (GES DISC) is funded by NASA's Science Mission Directorate (SMD). Consistent with NASA Earth Science Data and Information Policy, data from the GES DISC archive are available free to the user community. For more information visit the GES DISC Data Policy page.

引用:

Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll, The Global Land Data Assimilation System, Bull. Amer. Meteor. Soc., 85(3), 381-394, 2004.

Additional references

代码:

var dataset = ee.ImageCollection('NASA/GLDAS/V021/NOAH/G025/T3H')
                  .filter(ee.Filter.date('2010-06-01', '2010-06-02'));
var averageSurfaceSkinTemperatureK = dataset.select('AvgSurfT_inst');
var averageSurfaceSkinTemperatureKVis = {
  min: 250.0,
  max: 300.0,
  palette: ['1303ff', '42fff6', 'f3ff40', 'ff5d0f'],
};
Map.setCenter(71.72, 52.48, 3.0);
Map.addLayer(
    averageSurfaceSkinTemperatureK, averageSurfaceSkinTemperatureKVis,
    'Average Surface Skin Temperature [K]');


相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2691 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
251 0
|
7月前
|
机器学习/深度学习 自然语言处理 对象存储
[wordpiece]论文分析:Google’s Neural Machine Translation System
[wordpiece]论文分析:Google’s Neural Machine Translation System
94 1
|
7月前
|
机器学习/深度学习 数据采集 数据可视化
R语言Pearson相关性分析降雨量和“外卖”谷歌搜索热度google trend时间序列数据可视化
R语言Pearson相关性分析降雨量和“外卖”谷歌搜索热度google trend时间序列数据可视化
|
7月前
|
数据可视化 搜索推荐 数据挖掘
R语言Pearson相关性分析就业率和“性别平等”谷歌搜索热度google trend时间序列数据可视化
R语言Pearson相关性分析就业率和“性别平等”谷歌搜索热度google trend时间序列数据可视化
|
7月前
|
数据可视化 数据挖掘 数据建模
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
101 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
165 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
88 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
291 0