Google Earth Engine——USGS/GAP/PR/2001波多黎各的详细植被和土地覆盖分类

简介: Google Earth Engine——USGS/GAP/PR/2001波多黎各的详细植被和土地覆盖分类

USGS/GAP/PR/2001

The GAP/LANDFIRE National Terrestrial Ecosystems data represents a detailed vegetation and land cover classification for the Conterminous U.S., Alaska, Hawaii, and Puerto Rico.GAP/LF 2011 Ecosystems for the Conterminous U.S. is an update of the National Gap Analysis Program Land Cover Data - Version 2.2. Alaska ecosystems have been updated by LANDFIRE to 2012 conditions (LANDFIRE 2012). Hawaii and Puerto Rico data represent the 2001 time-frame (Gon et al. 2006, Gould et al. 2008). The classification scheme used for the Alaska and the lower 48 states is based on NatureServe’s Ecological System Classification (Comer et al. 2003), while Puerto Rico and Hawaii’s map legend are based on island specific classification systems (Gon et al. 2006, Gould et al. 2008).


GAP/LANDFIRE国家陆地生态系统数据代表了美国本土、阿拉斯加、夏威夷和波多黎各的详细植被和土地覆盖分类。美国本土的GAP/LF 2011生态系统是国家差距分析计划土地覆盖数据-2.2版的更新。阿拉斯加的生态系统已被LANDFIRE更新至2012年的状况(LANDFIRE 2012)。夏威夷和波多黎各的数据代表2001年的时间框架(Gon等人,2006年,Gould等人,2008年)。阿拉斯加和48个州的分类方案是基于NatureServe的生态体系分类(Comer等人,2003年),而波多黎各和夏威夷的地图图例是基于岛屿的具体分类系统(Gon等人,2006年,Gould等人,2008年)。

Dataset Availability

2001-01-01T00:00:00 - 2002-01-01T00:00:00

Dataset Provider

USGS

Collection Snippet

Copied

ee.Image("USGS/GAP/PR/2001")

Resolution

30 meters

Bands Table

Name Description Min Max
landcover Landcover class descriptions 1 70

Class Table: landcover

Value Color Color Value Description
1 # Mature secondary lowland dry alluvial semideciduous forest
2 # Young secondary lowland dry alluvial semideciduous forest
3 # Lowland dry alluvial shrubland and woodland
4 # Mature secondary lowland dry limestone evergreen forest
5 # Mature secondary lowland dry limestone semideciduous forest
6 # Young secondary lowland dry limestone semideciduous forest
7 # Lowland dry limestone woodland and shrubland
8 # Lowland dry limestone shrubland
9 # Lowland dry cactus shrubland
10 # Coastal dwarf woodland and shrubland
11 # Lowland dry limestone cliffside semideciduous forest
12 # Lowland dry limestone cliffside shrubland and woodland
13 # Mature secondary lowland dry noncalcareous semideciduous forest
14 # Young secondary lowland dry noncalcareous semideciduous forest
15 # Lowland dry noncalcareous shrubland and woodland
16 # Mature secondary dry and moist serpentine semideciduous forest
17 # Young secondary dry and moist serpentine semideciduous forest
18 # Dry and moist serpentine woodland and shrubland
19 # Abandoned dry forest plantation
20 # Mature secondary lowland moist evergreen alluvial forest
21 # Young secondary lowland moist evergreen alluvial forest
22 # Lowland moist alluvium shrubland and woodland
23 # Mature secondary moist limestone evergreen and semideciduous forest
24 # Young secondary moist limestone evergreen and semideciduous forest
25 # Moist limestone shrubland and woodland
26 # Mature secondary lowland moist evergreen noncalcareous forest
27 # Young secondary lowland moist evergreen noncalcareous forest
28 # Lowland moist noncalcareous shrubland and woodland
29 # Lowland moist abandoned and active coffee plantations
30 # Mature secondary montane wet alluvial evergreen forest
31 # Young secondary montane wet alluvial evergreen forest
32 # Montane wet alluvial shrubland and woodland
33 # Mature secondary montane wet noncalcareous evergreen forest
34 # Mature primary and secondary montane wet noncalcareous evergreen Tabonuco forest
35 # Mature primary and secondary montane wet noncalcareous evergreen Palo Colorado cloud forest
36 # Mature primary and secondary montane wet noncalcareous evergreen Sierra Palm forest
37 # Mature primary and secondary montane wet noncalcareous evergreen elfin woodland cloud forest
38 # Young secondary montane wet noncalcareous evergreen forest
39 # Montane wet evergreen noncalcareous shrubland and woodland
40 # Mature secondary montane wet serpentine evergreen forest
41 # Young secondary montane wet serpentine evergreen forest
42 # Wet serpentine shrubland and woodland
43 # Montane wet evergreen abandoned and active coffee plantation
44 # Mangrove forest and shrubland
45 # Freshwater Pterocarpus swamp
46 # Lowland dry riparian forest
47 # Lowland dry riparian shrubland and woodland
48 # Dry grasslands and pastures
49 # Dry cactus grassland and shrubland
50 # Moist grasslands and pastures
51 # Emergent herbaceous nonsaline wetlands
52 # Emergent herbaceous saline wetlands
53 # Seasonally flooded herbaceous nonsaline wetlands
54 # Seasonally flooded herbaceous saline wetlands
55 # Hay and row crops
56 # Woody agriculture and plantations: Palm plantations
57 # Rocky cliffs and shelves
58 # Gravel beaches and stony shoreline
59 # Fine to coarse sandy beaches@ mixed sand and gravel beaches
60 # Riparian and other natural barrens
61 # Salt and mudflats
62 # Salt production
63 # High-density urban development
64 # Low-density urban development
65 # Artificial barrens
66 # Freshwater
67 # Salt water
68 # Lowland moist riparian forest
69 # Lowland moist riparian shrubland and woodland
70 # Aquaculture

使用和引用:

Most U.S. Geological Survey (USGS) information resides in the public domain and may be used without restriction. Additional information on Acknowledging or Crediting USGS as Information Source is available.

Gould, W. A. C. Alarcon, B. Fevold, M.E. Jimenez, S. Martinuzzi, G. Potts, M. Quinones, M. Solorzona, E. Ventosa. 2008. The Puerto Rico Gap Analysis Project. Volume 1: Land cover, vertebrate species distribution, and land stewardship. Gen. Tech. Rep. IITF-GRT-39. Rio Piedras, Pr. USDA, Forest Service, International Institute of Tropical Forestery. 165. p.

代码:

var dataset = ee.Image('USGS/GAP/PR/2001');
var visualization = {
  bands: ['landcover'],
  min: 1.0,
  max: 70.0,
};
Map.setCenter(-66.51, 18.23, 8);
Map.addLayer(dataset, visualization, 'GAP Purto Rico');


相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2681 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
250 0
|
7月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
658 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
98 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
165 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
86 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
291 0
|
7月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
147 0
|
7月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
136 0
|
7月前
|
编解码 定位技术
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
219 0