Google Earth Engine ——MODIS表面反射率产品提供了在没有大气散射或吸收的情况下在地面测量的表面光谱反射率的估计。低层数据经过了大气气体和气溶胶的校正

简介: Google Earth Engine ——MODIS表面反射率产品提供了在没有大气散射或吸收的情况下在地面测量的表面光谱反射率的估计。低层数据经过了大气气体和气溶胶的校正

The MODIS Surface Reflectance products provide an estimate of the surface spectral reflectance as it would be measured at ground level in the absence of atmospheric scattering or absorption. Low-level data are corrected for atmospheric gases and aerosols. MOD09GA version 6 provides bands 1-7 in a daily gridded L2G product in the sinusoidal projection, including 500m reflectance values and 1km observation and geolocation statistics.

Documentation:

MODIS表面反射率产品提供了在没有大气散射或吸收的情况下在地面测量的表面光谱反射率的估计。低层数据经过了大气气体和气溶胶的校正。MOD09GA第6版在正弦投影的每日网格化L2G产品中提供了1-7个波段,包括500米反射值和1公里观测和地理位置统计。

文件。

用户指南

算法理论基础文件(ATBD)

一般文件

Dataset Availability

2000-02-24T00:00:00 - 2021-09-19T00:00:00

Dataset Provider

NASA LP DAAC at the USGS EROS Center

Collection Snippet

Copied

ee.ImageCollection("MODIS/006/MOD09GA")

Bands Table

Name Description Min Max Resolution Units Wavelength Scale
num_observations_1km Number of observations per 1K pixel 2 127 1000 meters 0
state_1km Reflectance data state QA 1000 meters 0
state_1km Bitmask
  • Bits 0-1: Cloud state
    • 0: Clear
    • 1: Cloudy
    • 2: Mixed
    • 3: Not set, assumed clear
  • Bit 2: Cloud shadow
    • 0: No
    • 1: Yes
  • Bits 3-5: Land/water flag
    • 0: Shallow ocean
    • 1: Land
    • 2: Ocean coastlines and lake shorelines
    • 3: Shallow inland water
    • 4: Ephemeral water
    • 5: Deep inland water
    • 6: Continental/moderate ocean
    • 7: Deep ocean
  • Bits 6-7: Aerosol quantity
    • 0: Climatology
    • 1: Low
    • 2: Average
    • 3: High
  • Bits 8-9: Cirrus detected
    • 0: None
    • 1: Small
    • 2: Average
    • 3: High
  • Bit 10: Internal cloud algorithm flag
    • 0: No cloud
    • 1: Cloud
  • Bit 11: Internal fire algorithm flag
    • 0: No fire
    • 1: Fire
  • Bit 12: MOD35 snow/ice flag
    • 0: No
    • 1: Yes
  • Bit 13: Pixel is adjacent to cloud
    • 0: No
    • 1: Yes
  • Bit 14: BRDF correction performed data
    • 0: No
    • 1: Yes
  • Bit 15: Internal snow mask
    • 0: No snow
    • 1: Snow
SensorZenith Sensor zenith angle 0 18000 1000 meters Degrees 0.01
SensorAzimuth Sensor azimuth angle -18000 18000 1000 meters Degrees 0.01
Range Distance to sensor 27000 65535 1000 meters Meters 25
SolarZenith Solar zenith angle 0 18000 1000 meters Degrees 0.01
SolarAzimuth Solar azimuth angle -18000 18000 1000 meters Degrees 0.01
gflags Geolocation flags 1000 meters 0
gflags Bitmask
  • Bits 0-2: Fill
    • 0: Fill
  • Bit 3: Sensor range validity flag
    • 0: Valid
    • 1: Invalid
  • Bit 4: Digital elevation model quality flag
    • 0: Valid
    • 1: Missing/inferior
  • Bit 5: Terrain data validity
    • 0: Valid
    • 1: Invalid
  • Bit 6: Ellipsoid intersection flag
    • 0: Valid intersection
    • 1: No intersection
  • Bit 7: Input data flag
    • 0: Valid
    • 1: Invalid
orbit_pnt Orbit pointer 0 15 1000 meters 0
granule_pnt Granule pointer 0 254 1000 meters 0
num_observations_500m Number of observations 0 127 500 meters 0
sur_refl_b01 Surface reflectance for band 1 -100 16000 500 meters 620-670nm 0.0001
sur_refl_b02 Surface reflectance for band 2 -100 16000 500 meters 841-876nm 0.0001
sur_refl_b03 Surface reflectance for band 3 -100 16000 500 meters 459-479nm 0.0001
sur_refl_b04 Surface reflectance for band 4 -100 16000 500 meters 545-565nm 0.0001
sur_refl_b05 Surface reflectance for band 5 -100 16000 500 meters 1230-1250nm 0.0001
sur_refl_b06 Surface reflectance for band 6 -100 16000 500 meters 1628-1652nm 0.0001
sur_refl_b07 Surface reflectance for band 7 -100 16000 500 meters 2105-2155nm 0.0001
QC_500m Surface reflectance quality assurance 500 meters 0
QC_500m Bitmask
  • Bits 0-1: MODLAND QA bits
    • 0: Corrected product produced at ideal quality - all bands
    • 1: Corrected product produced at less than ideal quality - some or all bands
    • 2: Corrected product not produced due to cloud effects - all bands
    • 3: Corrected product not produced for other reasons - some or all bands, may be fill value (11) [Note that a value of (11) overrides a value of (01)]
  • Bits 2-5: Band 1 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 6-9: Band 2 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 10-13: Band 3 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 14-17: Band 4 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 18-21: Band 5 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 22-25: Band 6 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 26-29: Band 7 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bit 30: Atmospheric correction performed
    • 0: No
    • 1: Yes
  • Bit 31: Adjacency correction performed
    • 0: No
    • 1: Yes
obscov_500m Observation coverage percent 0 100 500 meters 0
iobs_res Observation number in coarser grid 0 254 500 meters 0
q_scan 250m scan value information 500 meters 0
q_scan Bitmask
  • Bit 0: Scan of observation in quadrant 1 [-0.5 row, -0.5 column]
    • 0: No
    • 1: Yes
  • Bit 1: Scan of observation in quadrant 2 [-0.5 row, +0.5 column]
    • 0: No
    • 1: Yes
  • Bit 2: Scan of observation in quadrant 3 [+0.5 row, -0.5 column]
    • 0: No
    • 1: Yes
  • Bit 3: Scan of observation in quadrant 4 [+0.5 row, +0.5 column]
    • 0: No
    • 1: Yes
  • Bit 4: Missing observation in quadrant 1 [-0.5 row, -0.5 column]
    • 0: Different
    • 1: Same
  • Bit 5: Missing observation in quadrant 2 [-0.5 row, +0.5 column]
    • 0: Different
    • 1: Same
  • Bit 6: Missing observation in quadrant 3 [+0.5 row, -0.5 column]
    • 0: Different
    • 1: Same
  • Bit 7: Missing observation in quadrant 4 [+0.5 row, +0.5 column]
    • 0: Different
    • 1: Same

 使用说明:MODIS data and products acquired through the LP DAAC have no restrictions on subsequent use, sale, or redistribution.

数据引用:

LP DAAC - MOD09A1LP DAAC - MOD09A1

代码:

var dataset = ee.ImageCollection('MODIS/006/MOD09GA')
                  .filter(ee.Filter.date('2018-04-01', '2018-06-01'));
var trueColor143 =
    dataset.select(['sur_refl_b01', 'sur_refl_b04', 'sur_refl_b03']);
var trueColor143Vis = {
  min: -100.0,
  max: 8000.0,
};
Map.setCenter(-7.03125, 31.0529339857, 2);
Map.addLayer(trueColor143, trueColor143Vis, 'True Color (143)');



相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2691 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
6月前
|
机器学习/深度学习 人工智能 数据处理
人工智能平台PAI产品使用合集之PAI-DSW实例服务器ping不通google.com,该如何排查
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
7月前
|
分布式计算 Kubernetes 监控
容器服务Kubernetes版产品使用合集之registry.aliyuncs.com/google_containers 镜像仓库的地址是什么
容器服务Kubernetes版,作为阿里云提供的核心服务之一,旨在帮助企业及开发者高效管理和运行Kubernetes集群,实现应用的容器化与微服务化。以下是关于使用这些服务的一些建议和合集,涵盖基本操作、最佳实践、以及一些高级功能的使用方法。
725 0
|
7月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
662 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
101 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
165 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
88 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
291 0
|
7月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
148 0
|
7月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
136 0