Google Earth Engine ——MOD09A1 V6产品提供了Terra MODIS 1-7带500米分辨率的表面光谱反射率的估计,并对大气条件如气体、气溶胶和瑞利散射进行了校正!

简介: Google Earth Engine ——MOD09A1 V6产品提供了Terra MODIS 1-7带500米分辨率的表面光谱反射率的估计,并对大气条件如气体、气溶胶和瑞利散射进行了校正!

The MOD09A1 V6 product provides an estimate of the surface spectral reflectance of Terra MODIS bands 1-7 at 500m resolution and corrected for atmospheric conditions such as gasses, aerosols, and Rayleigh scattering. Along with the seven reflectance bands is a quality layer and four observation bands. For each pixel, a value is selected from all the acquisitions within the 8-day composite on the basis of high observation coverage, low view angle, the absence of clouds or cloud shadow, and aerosol loading.

Documentation:


MOD09A1 V6产品提供了Terra MODIS 1-7带500米分辨率的表面光谱反射率的估计,并对大气条件如气体、气溶胶和瑞利散射进行了校正。与七个反射带一起的是一个质量层和四个观测带。对于每个像素,根据高观测覆盖率、低视角、无云或云影以及气溶胶负荷,从8天合成的所有采集中选择一个值。

文件。

用户指南

算法理论基础文件(ATBD)

一般文件

Dataset Availability

2000-03-05T00:00:00 - 2021-09-14T00:00:00

Dataset Provider

NASA LP DAAC at the USGS EROS Center

Collection Snippet

ee.ImageCollection("MODIS/006/MOD09A1")

Resolution

500 meters

Bands Table

Name Description Min Max Units Wavelength Scale
sur_refl_b01 Surface reflectance for band 1 -100 16000 620-670nm 0.0001
sur_refl_b02 Surface reflectance for band 2 -100 16000 841-876nm 0.0001
sur_refl_b03 Surface reflectance for band 3 -100 16000 459-479nm 0.0001
sur_refl_b04 Surface reflectance for band 4 -100 16000 545-565nm 0.0001
sur_refl_b05 Surface reflectance for band 5 -100 16000 1230-1250nm 0.0001
sur_refl_b06 Surface reflectance for band 6 -100 16000 1628-1652nm 0.0001
sur_refl_b07 Surface reflectance for band 7 -100 16000 2105-2155nm 0.0001
QA Surface reflectance 500m band quality control flags 0
QA Bitmask
  • Bits 0-1: MODLAND QA bits
    • 0: Corrected product produced at ideal quality - all bands
    • 1: Corrected product produced at less than ideal quality - some or all bands
    • 2: Corrected product not produced due to cloud effects - all bands
    • 3: Corrected product not produced for other reasons - some or all bands, may be fill value (11) [Note that a value of (11) overrides a value of (01)]
  • Bits 2-5: Band 1 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 6-9: Band 2 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 10-13: Band 3 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 14-17: Band 4 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 18-21: Band 5 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 22-25: Band 6 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bits 26-29: Band 7 data quality, four bit range
    • 0: Highest quality
    • 7: Noisy detector
    • 8: Dead detector, data interpolated in L1B
    • 9: Solar zenith ≥ 86 degrees
    • 10: Solar zenith ≥ 85 and < 86 degrees
    • 11: Missing input
    • 12: Internal constant used in place of climatological data for at least one atmospheric constant
    • 13: Correction out of bounds, pixel constrained to extreme allowable value
    • 14: L1B data faulty
    • 15: Not processed due to deep ocean or clouds
  • Bit 30: Atmospheric correction performed
    • 0: No
    • 1: Yes
  • Bit 31: Adjacency correction performed
    • 0: No
    • 1: Yes
SolarZenith MODIS Solar zenith angle 0 18000 Degrees 0.01
ViewZenith MODIS view zenith angle 0 18000 Degrees 0.01
RelativeAzimuth MODIS relative azimuth angle -18000 18000 Degrees 0.01
StateQA Surface reflectance 500m state flags 0
StateQA Bitmask
  • Bits 0-1: Cloud state
    • 0: Clear
    • 1: Cloudy
    • 2: Mixed
    • 3: Not set, assumed clear
  • Bit 2: Cloud shadow
    • 0: No
    • 1: Yes
  • Bits 3-5: Land/water flag
    • 0: Shallow ocean
    • 1: Land
    • 2: Ocean coastlines and lake shorelines
    • 3: Shallow inland water
    • 4: Ephemeral water
    • 5: Deep inland water
    • 6: Continental/moderate ocean
    • 7: Deep ocean
  • Bits 6-7: Aerosol quantity
    • 0: Climatology
    • 1: Low
    • 2: Average
    • 3: High
  • Bits 8-9: Cirrus detected
    • 0: None
    • 1: Small
    • 2: Average
    • 3: High
  • Bit 10: Internal cloud algorithm flag
    • 0: No cloud
    • 1: Cloud
  • Bit 11: Internal fire algorithm flag
    • 0: No fire
    • 1: Fire
  • Bit 12: MOD35 snow/ice flag
    • 0: No
    • 1: Yes
  • Bit 13: Pixel is adjacent to cloud
    • 0: No
    • 1: Yes
  • Bit 14: BRDF correction performed data
    • 0: No
    • 1: Yes
  • Bit 15: Internal snow mask
    • 0: No snow
    • 1: Snow
DayOfYear Julian day of the year for the pixel 1 366 0

使用说明:MODIS data and products acquired through the LP DAAC have no restrictions on subsequent use, sale, or redistribution.

数据引用:

LP DAAC - MOD09A1


相关文章
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2691 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
251 0
|
6月前
|
机器学习/深度学习 人工智能 数据处理
人工智能平台PAI产品使用合集之PAI-DSW实例服务器ping不通google.com,该如何排查
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
7月前
|
分布式计算 Kubernetes 监控
容器服务Kubernetes版产品使用合集之registry.aliyuncs.com/google_containers 镜像仓库的地址是什么
容器服务Kubernetes版,作为阿里云提供的核心服务之一,旨在帮助企业及开发者高效管理和运行Kubernetes集群,实现应用的容器化与微服务化。以下是关于使用这些服务的一些建议和合集,涵盖基本操作、最佳实践、以及一些高级功能的使用方法。
725 0
|
7月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
124 0
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
101 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
165 0
|
7月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
88 0
|
7月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
291 0
|
7月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
148 0