Google Earth Engine ——LANDSAT/LT4/LT5_L1T_ANNUAL_GREENEST_TOA归一化植被指数(NDVI)值最高的像素数据集

简介: Google Earth Engine ——LANDSAT/LT4/LT5_L1T_ANNUAL_GREENEST_TOA归一化植被指数(NDVI)值最高的像素数据集

These Landsat 4 TM composites are made from Level L1T orthorectified scenes, using the computed top-of-atmosphere (TOA) reflectance. See Chander et al. (2009) for details on the TOA computation.

As of May 1, 2017, the USGS is no longer producing Pre-Collection Landsat, and therefore this collection is complete. Please switch to a Collection 1-based dataset. See this documentation page for more information.

These composites are created from all the scenes in each annual period beginning from the first day of the year and continuing to the last day of the year. All the images from each year are included in the composite, with the greenest pixel as the composite value, where the greenest pixel means the pixel with the highest value of the Normalized Difference Vegetation Index (NDVI).


这些Landsat 4 TM合成物是由L1T级正射场景制作的,使用计算的大气层顶部(TOA)反射率。关于TOA计算的细节,见Chander等人(2009)。

从2017年5月1日起,美国地质调查局不再生产预收集的Landsat,因此这个收集已经完成。请切换到基于集合1的数据集。更多信息请参见此文档页面。

这些合成物是由每个年度的所有场景创建的,从当年的第一天开始,一直到当年的最后一天。每一年的所有图像都包括在合成中,以最绿的像素作为合成值,其中最绿的像素指的是归一化植被指数(NDVI)值最高的像素。

Dataset Availability

1982-08-22T00:00:00 - 1993-12-14T00:00:00

Dataset Provider

USGS

Collection Snippet

ee.ImageCollection("LANDSAT/LT4_L1T_ANNUAL_GREENEST_TOA")

These Landsat 5 TM composites are made from Level L1T orthorectified scenes, using the computed top-of-atmosphere (TOA) reflectance. See Chander et al. (2009) for details on the TOA computation.

As of May 1, 2017, the USGS is no longer producing Pre-Collection Landsat, and therefore this collection is complete. Please switch to a Collection 1-based dataset. See this documentation page for more information.

These composites are created from all the scenes in each annual period beginning from the first day of the year and continuing to the last day of the year. All the images from each year are included in the composite, with the greenest pixel as the composite value, where the greenest pixel means the pixel with the highest value of the Normalized Difference Vegetation Index (NDVI).


这些Landsat 5 TM合成物是由L1T级正射场景制作的,使用计算的大气层顶部(TOA)反射率。关于TOA计算的细节,见Chander等人(2009)。

从2017年5月1日起,美国地质调查局不再生产预收集的Landsat,因此这个收集已经完成。请切换到基于集合1的数据集。更多信息请参见此文档页面。

这些合成物是由每个年度的所有场景创建的,从当年的第一天开始,一直到当年的最后一天。每一年的所有图像都包括在合成中,以最绿的像素作为合成值,其中最绿的像素指的是归一化植被指数(NDVI)值最高的像素。

Dataset Availability

1984-01-01T00:00:00 - 2012-05-05T00:00:00

Dataset Provider

USGS

Collection Snippet

ee.ImageCollection("LANDSAT/LT5_L1T_ANNUAL_GREENEST_TOA")

Bands Table

Name Description Resolution Wavelength
B1 Blue 30 meters 0.45 - 0.52 µm
B2 Green 30 meters 0.52 - 0.60 µm
B3 Red 30 meters 0.63 - 0.69 µm
B4 Near infrared 30 meters 0.76 - 0.90 µm
B5 Shortwave infrared 1 30 meters 1.55 - 1.75 µm
B6 Thermal Infrared 1. Resampled from 60m to 30m. 30 meters 10.40 - 12.50 µm
B7 Shortwave infrared 2 30 meters 2.08 - 2.35 µm
BQA Landsat Collection 1 QA Bitmask ([See Landsat QA page](https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-1-level-1-quality-assessment-band)) 30 meters
BQA Bitmask
  • Bit 0: Designated Fill
    • 0: No
    • 1: Yes
  • Bit 1: Designated Pixel
    • 0: No
    • 1: Yes
  • Bits 2-3: Radiometric Saturation
    • 0: No bands contain saturation
    • 1: 1-2 bands contain saturation
    • 2: 3-4 bands contain saturation
    • 3: 5 or more bands contain saturation
  • Bit 4: Cloud
    • 0: No
    • 1: Yes
  • Bits 5-6: Cloud Confidence
    • 0: Not Determined / Condition does not exist.
    • 1: Low, (0-33 percent confidence)
    • 2: Medium, (34-66 percent confidence)
    • 3: High, (67-100 percent confidence)
  • Bits 7-8: Cloud Shadow Confidence
    • 0: Not Determined / Condition does not exist.
    • 1: Low, (0-33 percent confidence)
    • 2: Medium, (34-66 percent confidence)
    • 3: High, (67-100 percent confidence)
  • Bits 9-10: Snow / Ice Confidence
    • 0: Not Determined / Condition does not exist.
    • 1: Low, (0-33 percent confidence)
    • 2: Medium, (34-66 percent confidence)
    • 3: High, (67-100 percent confidence)
greenness The pixel with the highest value of the Normalized Difference Vegetation Index (NDVI) for the year covered by the image. 30 meters


使用说明:

Landsat datasets are federally created data and therefore reside in the public domain and may be used, transferred, or reproduced without copyright restriction.

Acknowledgement or credit of the USGS as data source should be provided by including a line of text citation such as the example shown below.

(Product, Image, Photograph, or Dataset Name) courtesy of the U.S. Geological Survey

Example: Landsat-7 image courtesy of the U.S. Geological Survey

See the USGS Visual Identity System Guidance for further details on proper citation and acknowledgement of USGS products.


Landsat数据集是联邦创建的数据,因此属于公共领域,可以在没有版权限制的情况下使用、转让或复制。

对美国地质调查局作为数据来源的确认或信用,应通过包括一行文字引用来提供,如下面的例子。

(产品、图像、照片或数据集名称)由美国地质调查局提供。

例子。Landsat-7图像由美国地质调查局提供

请参阅美国地质调查局视觉识别系统指南,了解有关美国地质调查局产品的正确引用和鸣谢的进一步细节。

代码:

// NOTE: This ImageCollection is deprecated.
var dataset = ee.ImageCollection("LANDSAT/LT4_L1T_ANNUAL_GREENEST_TOA");
Map.setCenter( -119.0446, 35.1195, 12);
Map.addLayer(dataset.select("greenness"), null, "greenness");

代码:

// NOTE: This ImageCollection is deprecated.
var dataset = ee.ImageCollection("LANDSAT/LT5_L1T_ANNUAL_GREENEST_TOA");
Map.setCenter( -119.0446, 35.1195, 12);
Map.addLayer(dataset.select("greenness"), null, "greenness");


相关文章
|
8月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2831 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
8月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
272 0
|
8月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
733 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
8月前
|
数据可视化 数据挖掘 数据建模
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
|
8月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
115 0
|
8月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
176 0
|
8月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
94 0
|
8月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
330 0
|
8月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
156 0
|
8月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
151 0