Google Earth Engine——NOAA气候数据记录(CDR)的AVHRR归一化植被指数(NDVI)包含从NOAA AVHRR表面反射产品中得到的网格化的每日NDVI

简介: Google Earth Engine——NOAA气候数据记录(CDR)的AVHRR归一化植被指数(NDVI)包含从NOAA AVHRR表面反射产品中得到的网格化的每日NDVI

The NOAA Climate Data Record (CDR) of AVHRR Normalized Difference Vegetation Index (NDVI) contains gridded daily NDVI derived from the NOAA AVHRR Surface Reflectance product. It provides a measurement of surface vegetation coverage activity, gridded at a resolution of 0.05° and computed globally over land surfaces.

Known issues with this dataset include:

  • TIMEOFDAY variable contains values that are too large by 1 day
  • Latitude values are not correctly associated with the center of the grid cell, error is < 0.002 degrees
  • Longitude values are not correctly associated with the center of the grid cell, error is < 0.02 degrees

See technical note from the data provider.


NOAA气候数据记录(CDR)的AVHRR归一化植被指数(NDVI)包含从NOAA AVHRR表面反射产品中得到的网格化的每日NDVI。它提供了地表植被覆盖活动的测量,网格化的分辨率为0.05°,在全球范围内对陆地表面进行计算。

这个数据集的已知问题包括。

TIMEOFDAY变量包含的数值过大,超过1天。

纬度值与网格单元的中心没有正确关联,误差<0.002度

经度值与网格单元的中心没有正确关联,误差< 0.02度

见数据提供者的技术说明。

Dataset Availability

1981-06-24T00:00:00 - 2019-05-16T00:00:00

Dataset Provider

NOAA

Collection Snippet

ee.ImageCollection("NOAA/CDR/AVHRR/NDVI/V4")

Resolution

5566 meters

Bands Table

Name Description Min* Max* Units Scale
NDVI Normalized difference vegetation index -9998 9998 0.0001
TIMEOFDAY Hours since start of day 0 2400 hours 0.01
QA Quality control bit flags 0
QA Bitmask
  • Bit 0: Unused
    • 0: No
    • 1: Yes
  • Bit 1: Pixel is cloudy
    • 0: No
    • 1: Yes
  • Bit 2: Pixel contains cloud shadow
    • 0: No
    • 1: Yes
  • Bit 3: Pixel is over water
    • 0: No
    • 1: Yes
  • Bit 4: Pixel is over sunglint
    • 0: No
    • 1: Yes
  • Bit 5: Pixel is over dense dark vegetation
    • 0: No
    • 1: Yes
  • Bit 6: Pixel is at night (high solar zenith)
    • 0: No
    • 1: Yes
  • Bit 7: Channels 1-5 are valid
    • 0: No
    • 1: Yes
  • Bit 8: Channel 1 value is invalid
    • 0: No
    • 1: Yes
  • Bit 9: Channel 2 value is invalid
    • 0: No
    • 1: Yes
  • Bit 10: Channel 3 value is invalid
    • 0: No
    • 1: Yes
  • Bit 11: Channel 4 value is invalid
    • 0: No
    • 1: Yes
  • Bit 12: Channel 5 value is invalid
    • 0: No
    • 1: Yes
  • Bit 13: RHO3 value is invalid
    • 0: No
    • 1: Yes
  • Bit 14: BRDF correction is invalid
    • 0: No
    • 1: Yes
  • Bit 15: Polar flag, latitude over 60 degrees (land) or 50 degrees (ocean)
    • 0: No
    • 1: Yes

* = Values are estimated

影像属性:

Name Type Description
status String 'provisional' or 'permanent'


使用说明:

The NOAA CDR Program’s official distribution point for CDRs is NOAA’s National Climatic Data Center which provides sustained, open access and active data management of the CDR packages and related information in keeping with the United States’ open data policies and practices as described in the President's Memorandum on "Open Data Policy" and pursuant to the Executive Order of May 9, 2013, "Making Open and Machine Readable the New Default for Government Information". In line with these policies, the CDR data sets are nonproprietary, publicly available, and no restrictions are placed upon their use. For more information, see the Fair Use of NOAA's CDR Data Sets, Algorithms and Documentation pdf


引用:

Eric Vermote, Chris Justice, Ivan Csiszar, Jeff Eidenshink, Ranga Myneni, Frederic Baret, Ed Masuoka, Robert Wolfe, Martin Claverie and NOAA CDR Program (2014): NOAA Climate Data Record (CDR) of Normalized Difference Vegetation Index (NDVI), Version 4. [indicate subset used]. NOAA National Climatic Data Center. doi:10.7289/V5PZ56R6


代码:

var dataset = ee.ImageCollection('NOAA/CDR/AVHRR/NDVI/V4')
                  .filter(ee.Filter.date('2018-05-01', '2018-06-01'));
var ndvi = dataset.select('NDVI');
var ndviVis = {
  min: -1000.0,
  max: 5000.0,
  palette: [
    'ffffff', 'ce7e45', 'fcd163', 'c6ca02', '22cc04', '99b718', '207401',
    '012e01'
  ],
};
Map.setCenter(7.71, 17.93, 2);
Map.addLayer(ndvi, ndviVis, 'NDVI');

代码:

var dataset = ee.ImageCollection('NOAA/CDR/AVHRR/NDVI/V5')
                  .filter(ee.Filter.date('2018-05-01', '2018-06-01'));
var ndvi = dataset.select('NDVI');
var ndviVis = {
  min: -1000.0,
  max: 5000.0,
  palette: [
    'ffffff', 'ce7e45', 'fcd163', 'c6ca02', '22cc04', '99b718', '207401',
    '012e01'
  ],
};
Map.setCenter(7.71, 17.93, 2);
Map.addLayer(ndvi, ndviVis, 'NDVI');

 


相关文章
|
6月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2415 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
220 0
|
6月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
557 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
6月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
86 0
|
6月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
138 0
|
6月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
76 0
|
6月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
256 0
|
6月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
122 0
|
6月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
123 0
|
6月前
|
编解码 定位技术
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
Google Earth Engine(GEE)——导出后的影像像素不同于原始Landsat影像的分辨率(投影差异)
158 0

热门文章

最新文章

下一篇
无影云桌面