3.3 在Functional Interfaces中不要滥用Default Methods
Functional Interface是指只有一个未实现的抽象方法的接口。
如果该Interface中有多个方法,则可以使用default关键字为其提供一个默认的实现。
但是我们知道Interface是可以多继承的,一个class可以实现多个Interface。 如果多个Interface中定义了相同的default方法,则会报错。
通常来说default关键字一般用在升级项目中,避免代码报错。
3.4 使用Lambda 表达式来实例化Functional Interface
还是上面的例子:
@FunctionalInterface public interface Usage { String method(String string); }
要实例化Usage,我们可以使用new关键词:
Usage usage = new Usage() { @Override public String method(String string) { return string; } };
但是最好的办法就是用lambda表达式:
Usage usage = parameter -> parameter;
3.5 不要重写Functional Interface作为参数的方法
怎么理解呢? 我们看下面两个方法:
public class ProcessorImpl implements Processor { @Override public String process(Callable<String> c) throws Exception { // implementation details } @Override public String process(Supplier<String> s) { // implementation details } }
两个方法的方法名是一样的,只有传入的参数不同。但是两个参数都是Functional Interface,都可以用同样的lambda表达式来表示。
在调用的时候:
String result = processor.process(() -> "test");
因为区别不了到底调用的哪个方法,则会报错。
最好的办法就是将两个方法的名字修改为不同的。
3.6 Lambda表达式和内部类是不同的
虽然我们之前讲到使用lambda表达式可以替换内部类。但是两者的作用域范围是不同的。
在内部类中,会创建一个新的作用域范围,在这个作用域范围之内,你可以定义新的变量,并且可以用this引用它。
但是在Lambda表达式中,并没有定义新的作用域范围,如果在Lambda表达式中使用this,则指向的是外部类。
我们举个例子:
private String value = "Outer scope value"; public String scopeExperiment() { Usage usage = new Usage() { String value = "Inner class value"; @Override public String method(String string) { return this.value; } }; String result = usage.method(""); Usage usageLambda = parameter -> { String value = "Lambda value"; return this.value; }; String resultLambda = usageLambda.method(""); return "Results: result = " + result + ", resultLambda = " + resultLambda; }
上面的例子将会输出“Results: result = Inner class value, resultLambda = Outer scope value”
3.7 Lambda Expression尽可能简洁
通常来说一行代码即可。如果你有非常多的逻辑,可以将这些逻辑封装成一个方法,在lambda表达式中调用该方法即可。
因为lambda表达式说到底还是一个表达式,表达式当然越短越好。
java通过类型推断来判断传入的参数类型,所以我们在lambda表达式的参数中尽量不传参数类型,像下面这样:
(a, b) -> a.toLowerCase() + b.toLowerCase();
而不是:
(String a, String b) -> a.toLowerCase() + b.toLowerCase();
如果只有一个参数的时候,不需要带括号:
a -> a.toLowerCase();
而不是:
(a) -> a.toLowerCase();
返回值不需要带return:
a -> a.toLowerCase();
而不是:
a -> {return a.toLowerCase()};
3.8 使用方法引用
为了让lambda表达式更加简洁,在可以使用方法引用的时候,我们可以使用方法引用:
a -> a.toLowerCase();
可以被替换为:
String::toLowerCase;
3.9 Effectively Final 变量
如果在lambda表达式中引用了non-final变量,则会报错。
effectively final是什么意思呢?这个是一个近似final的意思。只要一个变量只被赋值一次,那么编译器将会把这个变量看作是effectively final的。
String localVariable = "Local"; Usage usage = parameter -> { localVariable = parameter; return localVariable; };
上面的例子中localVariable被赋值了两次,从而不是一个Effectively Final 变量,会编译报错。
为什么要这样设置呢?因为lambda表达式通常会用在并行计算中,当有多个线程同时访问变量的时候Effectively Final 变量可以防止不可以预料的修改。
4. stream表达式中实现if/else逻辑
在Stream处理中,我们通常会遇到if/else的判断情况,对于这样的问题我们怎么处理呢?
还记得我们在上一篇文章lambda最佳实践中提到,lambda表达式应该越简洁越好,不要在其中写臃肿的业务逻辑。
接下来我们看一个具体的例子。
4.1 传统写法
假如我们有一个1 to 10的list,我们想要分别挑选出奇数和偶数出来,传统的写法,我们会这样使用:
public void inForEach(){ List<Integer> ints = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); ints.stream() .forEach(i -> { if (i.intValue() % 2 == 0) { System.out.println("i is even"); } else { System.out.println("i is old"); } }); }
上面的例子中,我们把if/else的逻辑放到了forEach中,虽然没有任何问题,但是代码显得非常臃肿。
接下来看看怎么对其进行改写。
4.2 使用filter
我们可以把if/else的逻辑改写为两个filter:
List<Integer> ints = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); Stream<Integer> evenIntegers = ints.stream() .filter(i -> i.intValue() % 2 == 0); Stream<Integer> oddIntegers = ints.stream() .filter(i -> i.intValue() % 2 != 0);
有了这两个filter,再在filter过后的stream中使用for each:
evenIntegers.forEach(i -> System.out.println("i is even")); oddIntegers.forEach(i -> System.out.println("i is old"));
怎么样,代码是不是非常简洁明了。
5. 在map中使用stream
Map是java中非常常用的一个集合类型,我们通常也需要去遍历Map去获取某些值,java 8引入了Stream的概念,那么我们怎么在Map中使用Stream呢?
5.1 基本概念
Map有key,value还有表示key,value整体的Entry。
创建一个Map:
Map<String, String> someMap = new HashMap<>();
获取Map的entrySet:
Set<Map.Entry<String, String>> entries = someMap.entrySet();
获取map的key:
Set<String> keySet = someMap.keySet();
获取map的value:
Collection<String> values = someMap.values();
上面我们可以看到有这样几个集合:Map,Set,Collection。
除了Map没有stream,其他两个都有stream方法:
Stream<Map.Entry<String, String>> entriesStream = entries.stream(); Stream<String> valuesStream = values.stream(); Stream<String> keysStream = keySet.stream();
我们可以通过其他几个stream来遍历map。
5.2 使用Stream获取map的key
我们先给map添加几个值:
someMap.put("jack","20"); someMap.put("bill","35");
上面我们添加了name和age字段。
如果我们想查找age=20的key,则可以这样做:
Optional<String> optionalName = someMap.entrySet().stream() .filter(e -> "20".equals(e.getValue())) .map(Map.Entry::getKey) .findFirst(); log.info(optionalName.get());
因为返回的是Optional,如果值不存在的情况下,我们也可以处理:
optionalName = someMap.entrySet().stream() .filter(e -> "Non ages".equals(e.getValue())) .map(Map.Entry::getKey).findFirst(); log.info("{}",optionalName.isPresent());
上面的例子我们通过调用isPresent来判断age是否存在。
如果有多个值,我们可以这样写:
someMap.put("alice","20"); List<String> listnames = someMap.entrySet().stream() .filter(e -> e.getValue().equals("20")) .map(Map.Entry::getKey) .collect(Collectors.toList()); log.info("{}",listnames);
上面我们调用了collect(Collectors.toList())将值转成了List。
5.3 使用stream获取map的value
上面我们获取的map的key,同样的我们也可以获取map的value:
List<String> listAges = someMap.entrySet().stream() .filter(e -> e.getKey().equals("alice")) .map(Map.Entry::getValue) .collect(Collectors.toList()); log.info("{}",listAges);
上面我们匹配了key值是alice的value。
6. Stream中的操作类型和peek的使用
java 8 stream作为流式操作有两种操作类型,中间操作和终止操作。这两种有什么区别呢?
我们看一个peek的例子:
Stream<String> stream = Stream.of("one", "two", "three","four"); stream.peek(System.out::println);
上面的例子中,我们的本意是打印出Stream的值,但实际上没有任何输出。
为什么呢?
6.1 中间操作和终止操作
一个java 8的stream是由三部分组成的。数据源,零个或一个或多个中间操作,一个或零个终止操作。
中间操作是对数据的加工,注意,中间操作是lazy操作,并不会立马启动,需要等待终止操作才会执行。
终止操作是stream的启动操作,只有加上终止操作,stream才会真正的开始执行。
所以,问题解决了,peek是一个中间操作,所以上面的例子没有任何输出。
6.2 peek
我们看下peek的文档说明:peek主要被用在debug用途。
我们看下debug用途的使用:
Stream.of("one", "two", "three","four").filter(e -> e.length() > 3) .peek(e -> System.out.println("Filtered value: " + e)) .map(String::toUpperCase) .peek(e -> System.out.println("Mapped value: " + e)) .collect(Collectors.toList());
上面的例子输出:
Filtered value: three Mapped value: THREE Filtered value: four Mapped value: FOUR
上面的例子我们输出了stream的中间值,方便我们的调试。
为什么只作为debug使用呢?我们再看一个例子:
Stream.of("one", "two", "three","four").peek(u -> u.toUpperCase()) .forEach(System.out::println);
上面的例子我们使用peek将element转换成为upper case。然后输出:
one two three four
可以看到stream中的元素并没有被转换成大写格式。
再看一个map的对比:
Stream.of("one", "two", "three","four").map(u -> u.toUpperCase()) .forEach(System.out::println);
输出:
ONE TWO THREE FOUR
可以看到map是真正的对元素进行了转换。
当然peek也有例外,假如我们Stream里面是一个对象会怎么样?
@Data @AllArgsConstructor static class User{ private String name; }
List<User> userList=Stream.of(new User("a"),new User("b"),new User("c")).peek(u->u.setName("kkk")).collect(Collectors.toList()); log.info("{}",userList);
输出结果:
10:25:59.784 [main] INFO com.flydean.PeekUsage - [PeekUsage.User(name=kkk), PeekUsage.User(name=kkk), PeekUsage.User(name=kkk)]
我们看到如果是对象的话,实际的结果会被改变。
为什么peek和map有这样的区别呢?
我们看下peek和map的定义:
Stream<T> peek(Consumer<? super T> action) <R> Stream<R> map(Function<? super T, ? extends R> mapper);
peek接收一个Consumer,而map接收一个Function。
Consumer是没有返回值的,它只是对Stream中的元素进行某些操作,但是操作之后的数据并不返回到Stream中,所以Stream中的元素还是原来的元素。
而Function是有返回值的,这意味着对于Stream的元素的所有操作都会作为新的结果返回到Stream中。
这就是为什么peek String不会发生变化而peek Object会发送变化的原因。
7. lambda表达式中的异常处理
java 8中引入了lambda表达式,lambda表达式可以让我们的代码更加简介,业务逻辑更加清晰,但是在lambda表达式中使用的Functional Interface并没有很好的处理异常,因为JDK提供的这些Functional Interface通常都是没有抛出异常的,这意味着需要我们自己手动来处理异常。
因为异常分为Unchecked Exception和checked Exception,我们分别来讨论。
7.1 处理Unchecked Exception
Unchecked exception也叫做RuntimeException,出现RuntimeException通常是因为我们的代码有问题。RuntimeException是不需要被捕获的。也就是说如果有RuntimeException,没有捕获也可以通过编译。
我们看一个例子:
List<Integer> integers = Arrays.asList(1,2,3,4,5); integers.forEach(i -> System.out.println(1 / i));
这个例子是可以编译成功的,但是上面有一个问题,如果list中有一个0的话,就会抛出ArithmeticException。
虽然这个是一个Unchecked Exception,但是我们还是想处理一下:
integers.forEach(i -> { try { System.out.println(1 / i); } catch (ArithmeticException e) { System.err.println( "Arithmetic Exception occured : " + e.getMessage()); } });
上面的例子我们使用了try,catch来处理异常,简单但是破坏了lambda表达式的最佳实践。代码变得臃肿。
我们将try,catch移到一个wrapper方法中:
static Consumer<Integer> lambdaWrapper(Consumer<Integer> consumer) { return i -> { try { consumer.accept(i); } catch (ArithmeticException e) { System.err.println( "Arithmetic Exception occured : " + e.getMessage()); } }; }
则原来的调用变成这样:
integers.forEach(lambdaWrapper(i -> System.out.println(1 / i)));
但是上面的wrapper固定了捕获ArithmeticException,我们再将其改编成一个更通用的类:
static <T, E extends Exception> Consumer<T> consumerWrapperWithExceptionClass(Consumer<T> consumer, Class<E> clazz) { return i -> { try { consumer.accept(i); } catch (Exception ex) { try { E exCast = clazz.cast(ex); System.err.println( "Exception occured : " + exCast.getMessage()); } catch (ClassCastException ccEx) { throw ex; } } }; }
上面的类传入一个class,并将其cast到异常,如果能cast,则处理,否则抛出异常。
这样处理之后,我们这样调用:
integers.forEach( consumerWrapperWithExceptionClass( i -> System.out.println(1 / i), ArithmeticException.class));
7.2 处理checked Exception
checked Exception是必须要处理的异常,我们还是看个例子:
static void throwIOException(Integer integer) throws IOException { }
List<Integer> integers = Arrays.asList(1, 2, 3, 4, 5); integers.forEach(i -> throwIOException(i));
上面我们定义了一个方法抛出IOException,这是一个checked Exception,需要被处理,所以在下面的forEach中,程序会编译失败,因为没有处理相应的异常。
最简单的办法就是try,catch住,如下所示:
integers.forEach(i -> { try { throwIOException(i); } catch (IOException e) { throw new RuntimeException(e); } });
当然,这样的做法的坏处我们在上面已经讲过了,同样的,我们可以定义一个新的wrapper方法:
static <T> Consumer<T> consumerWrapper( ThrowingConsumer<T, Exception> throwingConsumer) { return i -> { try { throwingConsumer.accept(i); } catch (Exception ex) { throw new RuntimeException(ex); } }; }
我们这样调用:
integers.forEach(consumerWrapper(i -> throwIOException(i)));
我们也可以封装一下异常:
static <T, E extends Exception> Consumer<T> consumerWrapperWithExceptionClass( ThrowingConsumer<T, E> throwingConsumer, Class<E> exceptionClass) { return i -> { try { throwingConsumer.accept(i); } catch (Exception ex) { try { E exCast = exceptionClass.cast(ex); System.err.println( "Exception occured : " + exCast.getMessage()); } catch (ClassCastException ccEx) { throw new RuntimeException(ex); } } }; }
然后这样调用:
integers.forEach(consumerWrapperWithExceptionClass( i -> throwIOException(i), IOException.class));
8. stream中throw Exception
之前的文章我们讲到,在stream中处理异常,需要将checked exception转换为unchecked exception来处理。
我们是这样做的:
static <T> Consumer<T> consumerWrapper( ThrowingConsumer<T, Exception> throwingConsumer) { return i -> { try { throwingConsumer.accept(i); } catch (Exception ex) { throw new RuntimeException(ex); } }; }
将异常捕获,然后封装成为RuntimeException。
封装成RuntimeException感觉总是有那么一点点问题,那么有没有什么更好的办法?
8.1 throw小诀窍
java的类型推断大家应该都知道,如果是 这样的形式,那么T将会被认为是RuntimeException!
我们看下例子:
public class RethrowException { public static <T extends Exception, R> R throwException(Exception t) throws T { throw (T) t; // just throw it, convert checked exception to unchecked exception } }
上面的类中,我们定义了一个throwException方法,接收一个Exception参数,将其转换为T,这里的T就是unchecked exception。
接下来看下具体的使用:
@Slf4j public class RethrowUsage { public static void main(String[] args) { try { throwIOException(); } catch (IOException e) { log.error(e.getMessage(),e); RethrowException.throwException(e); } } static void throwIOException() throws IOException{ throw new IOException("io exception"); } }
上面的例子中,我们将一个IOException转换成了一个unchecked exception。