Google Earth Engine ——2001-2017年非洲土壤在 0-20 厘米和 20-50 厘米的土壤深度处可提取的石含量数据,预测平均值和标准偏差

简介: Google Earth Engine ——2001-2017年非洲土壤在 0-20 厘米和 20-50 厘米的土壤深度处可提取的石含量数据,预测平均值和标准偏差

Stone content  at soil depths of 0-20 cm and 20-50 cm, predicted mean and standard deviation.

Pixel values must be back-transformed with exp(x/10)-1.

In areas of dense jungle (generally over central Africa), model accuracy is low and therefore artefacts such as banding (striping) might be seen.

Soil property predictions were made by Innovative Solutions for Decision Agriculture Ltd. (iSDA) at 30 m pixel size using machine learning coupled with remote sensing data and a training set of over 100,000 analyzed soil samples.

Further information can be found in the FAQ and technical information documentation. To submit an issue or request support, please visit the iSDAsoil site.

土壤深度为 0-20 厘米和 20-50 厘米的可提取含石量,预测平均值和标准偏差。


像素值必须使用 exp(x/10)-1 进行反向转换。


在茂密的丛林地区(通常在非洲中部),模型精度较低,因此可能会看到条带(条纹)等伪影。


决策农业创新解决方案有限公司 (iSDA) 使用机器学习、遥感数据和超过 100,000 个分析土壤样本的训练集,以 30 m 像素大小对土壤特性进行了预测。


更多信息可以在常见问题和技术信息文档中找到。要提交问题或请求支持,请访问 iSDAsoil 站点。

Dataset Availability

2001-01-01T00:00:00 - 2017-01-01T00:00:00

Dataset Provider

iSDA

Collection Snippet

ee.Image("ISDASOIL/Africa/v1/stone_content")

Resolution

30 meters

Bands Table

Name Description Min Max Units
mean_0_20 Phosphorus, extractable, predicted mean at 0-20 cm depth 1 55 ppm
mean_20_50 Phosphorus, extractable, predicted mean at 20-50 cm depth 0 52 ppm
stdev_0_20 Phosphorus, extractable, standard deviation at 0-20 cm depth 0 19 ppm
stdev_20_50 Phosphorus, extractable, standard deviation at 20-50 cm depth 0 20 ppm

数据引用:

Hengl, T., Miller, M.A.E., Križan, J., et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). doi:10.1038/s41598-021-85639-y

代码:

var mean_0_20 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#00204D" label="0-0.1" opacity="1" quantity="1"/>' +
  '<ColorMapEntry color="#002D6C" label="0.1-0.3" opacity="1" quantity="3"/>' +
  '<ColorMapEntry color="#16396D" label="0.3-0.5" opacity="1" quantity="4"/>' +
  '<ColorMapEntry color="#36476B" label="0.5-0.6" opacity="1" quantity="5"/>' +
  '<ColorMapEntry color="#4B546C" label="0.6-0.8" opacity="1" quantity="6"/>' +
  '<ColorMapEntry color="#5C616E" label="0.8-1" opacity="1" quantity="7"/>' +
  '<ColorMapEntry color="#6C6E72" label="1-1.2" opacity="1" quantity="8"/>' +
  '<ColorMapEntry color="#7C7B78" label="1.2-1.5" opacity="1" quantity="9"/>' +
  '<ColorMapEntry color="#8E8A79" label="1.5-1.7" opacity="1" quantity="10"/>' +
  '<ColorMapEntry color="#A09877" label="1.7-2" opacity="1" quantity="11"/>' +
  '<ColorMapEntry color="#B3A772" label="2-2.3" opacity="1" quantity="12"/>' +
  '<ColorMapEntry color="#C6B66B" label="2.3-2.7" opacity="1" quantity="13"/>' +
  '<ColorMapEntry color="#DBC761" label="2.7-3.1" opacity="1" quantity="14"/>' +
  '<ColorMapEntry color="#F0D852" label="3.1-3.5" opacity="1" quantity="15"/>' +
  '<ColorMapEntry color="#FFEA46" label="3.5-80" opacity="1" quantity="16"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';
var mean_20_50 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#00204D" label="0-0.1" opacity="1" quantity="1"/>' +
  '<ColorMapEntry color="#002D6C" label="0.1-0.3" opacity="1" quantity="3"/>' +
  '<ColorMapEntry color="#16396D" label="0.3-0.5" opacity="1" quantity="4"/>' +
  '<ColorMapEntry color="#36476B" label="0.5-0.6" opacity="1" quantity="5"/>' +
  '<ColorMapEntry color="#4B546C" label="0.6-0.8" opacity="1" quantity="6"/>' +
  '<ColorMapEntry color="#5C616E" label="0.8-1" opacity="1" quantity="7"/>' +
  '<ColorMapEntry color="#6C6E72" label="1-1.2" opacity="1" quantity="8"/>' +
  '<ColorMapEntry color="#7C7B78" label="1.2-1.5" opacity="1" quantity="9"/>' +
  '<ColorMapEntry color="#8E8A79" label="1.5-1.7" opacity="1" quantity="10"/>' +
  '<ColorMapEntry color="#A09877" label="1.7-2" opacity="1" quantity="11"/>' +
  '<ColorMapEntry color="#B3A772" label="2-2.3" opacity="1" quantity="12"/>' +
  '<ColorMapEntry color="#C6B66B" label="2.3-2.7" opacity="1" quantity="13"/>' +
  '<ColorMapEntry color="#DBC761" label="2.7-3.1" opacity="1" quantity="14"/>' +
  '<ColorMapEntry color="#F0D852" label="3.1-3.5" opacity="1" quantity="15"/>' +
  '<ColorMapEntry color="#FFEA46" label="3.5-80" opacity="1" quantity="16"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';
var stdev_0_20 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="1"/>' +
  '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="2"/>' +
  '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="3"/>' +
  '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="4"/>' +
  '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="5"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';
var stdev_20_50 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="1"/>' +
  '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="2"/>' +
  '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="3"/>' +
  '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="4"/>' +
  '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="5"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';
var raw = ee.Image("ISDASOIL/Africa/v1/stone_content");
Map.addLayer(
    raw.select(0).sldStyle(mean_0_20), {},
    "Stone content, mean visualization, 0-20 cm");
Map.addLayer(
    raw.select(1).sldStyle(mean_20_50), {},
    "Stone content, mean visualization, 20-50 cm");
Map.addLayer(
    raw.select(2).sldStyle(stdev_0_20), {},
    "Stone content, stdev visualization, 0-20 cm");
Map.addLayer(
    raw.select(3).sldStyle(stdev_20_50), {},
    "Stone content, stdev visualization, 20-50 cm");
var converted = raw.divide(10).exp().subtract(1);
var visualization = {min: 0, max: 6};
Map.setCenter(25, -3, 2);
Map.addLayer(converted.select(0), visualization, "Stone content, mean, 0-20 cm");


相关文章
|
8月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2822 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
8月前
Google Earth Engine(GEE)——计算两列数据的相关性
Google Earth Engine(GEE)——计算两列数据的相关性
143 0
|
8月前
|
知识图谱
Google Earth Engine(GEE)——NASA NEX GDPDDP CMIP5数据集中的问题
Google Earth Engine(GEE)——NASA NEX GDPDDP CMIP5数据集中的问题
78 1
|
8月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
156 0
|
8月前
|
计算机视觉
Google Earth Engine(GEE)——使用MODIS数据单点测试SG滤波和harmonics method 滤波的差异分析
Google Earth Engine(GEE)——使用MODIS数据单点测试SG滤波和harmonics method 滤波的差异分析
291 0
|
8月前
|
存储 数据可视化 定位技术
Google Earth Engine谷歌地球引擎GEE中ee.Image格式单张栅格图像数据基本处理操作
Google Earth Engine谷歌地球引擎GEE中ee.Image格式单张栅格图像数据基本处理操作
135 1
|
8月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
270 0
|
8月前
|
数据可视化 数据挖掘 数据建模
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
R语言指数平滑法holt-winters分析谷歌Google Analytics博客用户访问时间序列数据
|
8月前
|
传感器 移动开发 NoSQL
Google Earth Engine(GEE)——明尼苏达大学官方全球核南极洲DEM数据下载
Google Earth Engine(GEE)——明尼苏达大学官方全球核南极洲DEM数据下载
111 0
Google Earth Engine(GEE)——明尼苏达大学官方全球核南极洲DEM数据下载
|
8月前
|
编解码 定位技术 Python
Google Earth Engine谷歌地球引擎GEE批量下载ImageCollection遥感影像数据合集的方法
Google Earth Engine谷歌地球引擎GEE批量下载ImageCollection遥感影像数据合集的方法
503 2

热门文章

最新文章