Google Earth Engine ——1958-2020年TerraClimate 全球陆地表面每月气候和气候水平衡的数据集

简介: Google Earth Engine ——1958-2020年TerraClimate 全球陆地表面每月气候和气候水平衡的数据集

TerraClimate: Monthly Climate and Climatic Water Balance for Global Terrestrial Surfaces, University of Idaho


TerraClimate is a dataset of monthly climate and climatic water balance for global terrestrial surfaces. It uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser spatial resolution, but time-varying data from CRU Ts4.0 and the Japanese 55-year Reanalysis (JRA55). Conceptually, the procedure applies interpolated time-varying anomalies from CRU Ts4.0/JRA55 to the high-spatial resolution climatology of WorldClim to create a high-spatial resolution dataset that covers a broader temporal record.


Temporal information is inherited from CRU Ts4.0 for most global land surfaces for temperature, precipitation, and vapor pressure. However, JRA55 data is used for regions where CRU data had zero climate stations contributing (including all of Antarctica, and parts of Africa, South America, and scattered islands). For primary climate variables of temperature, vapor pressure, and precipitation, the University of Idaho provides additional data on the number of stations (between 0 and 8) that contributed to the CRU Ts4.0 data used by TerraClimate. JRA55 was used exclusively for solar radiation and wind speeds.


TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. A modified Thornthwaite-Mather climatic water-balance model and extractable soil water storage capacity data was used at a 0.5° grid from Wang-Erlandsson et al. (2016).


TerraClimate 是全球陆地表面每月气候和气候水平衡的数据集。它使用气候辅助插值,将 WorldClim 数据集的高空间分辨率气候法线与较粗的空间分辨率、但来自 CRU Ts4.0 和日本 55 年再分析 (JRA55) 的时变数据相结合。从概念上讲,该过程将来自 CRU Ts4.0/JRA55 的内插时变异常应用于 WorldClim 的高空间分辨率气候学,以创建涵盖更广泛时间记录的高空间分辨率数据集。


大多数全球陆地表面的温度、降水和蒸汽压力的时间信息继承自 CRU Ts4.0。但是,JRA55 数据用于 CRU 数据具有零气候站贡献的地区(包括整个南极洲、非洲部分地区、南美洲和分散的岛屿)。对于温度、蒸气压和降水等主要气候变量,爱达荷大学提供了额外的数据,涉及对 TerraClimate 使用的 CRU Ts4.0 数据做出贡献的站点数量(0 到 8 之间)。 JRA55 专门用于太阳辐射和风速。


TerraClimate 还使用水平衡模型生成月度地表水平衡数据集,该模型结合了参考蒸散量、降水、温度和内插植物可提取土壤水容量。修改后的 Thornthwaite-Mather 气候水平衡模型和可提取的土壤蓄水能力数据在 Wang-Erlandsson 等人的 0.5° 网格中使用。 (2016)。


Dataset Availability

1958-01-01T00:00:00 - 2020-12-01T00:00:00

Dataset Provider

University of California Merced

Collection Snippet

ee.ImageCollection("IDAHO_EPSCOR/TERRACLIMATE")

Resolution

2.5 arc minutes

Bands Table

Name Description Min* Max* Units Scale
aet Actual evapotranspiration, derived using a one-dimensional soil water balance model 0 3140 mm 0.1
def Climate water deficit, derived using a one-dimensional soil water balance model 0 4548 mm 0.1
pdsi Palmer Drought Severity Index -4317 3418 0.01
pet Reference evapotranspiration (ASCE Penman-Montieth) 0 4548 mm 0.1
pr Precipitation accumulation 0 7245 mm 0
ro Runoff, derived using a one-dimensional soil water balance model 0 12560 mm 0
soil Soil moisture, derived using a one-dimensional soil water balance model 0 8882 mm 0.1
srad Downward surface shortwave radiation 0 5477 W/m^2 0.1
swe Snow water equivalent, derived using a one-dimensional soil water balance model 0 32767 mm 0
tmmn Minimum temperature -770 387 °C 0.1
tmmx Maximum temperature -670 576 °C 0.1
vap Vapor pressure 0 14749 kPa 0.001
vpd Vapor pressure deficit 0 1113 kPa 0.01
vs Wind-speed at 10m 0 2923 m/s 0.01


* = Values are estimated

影像属性:

Name Type Description
status String 'provisional' or 'permanent'


数据说明:

The data set is in the public domain as licensed under the Creative Commons Public Domain (CC0) license.

数据引用:

Abatzoglou, J.T., S.Z. Dobrowski, S.A. Parks, K.C. Hegewisch, 2018, Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015, Scientific Data 5:170191, doi:10.1038/sdata.2017.191

代码:

var dataset = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE')
                  .filter(ee.Filter.date('2017-07-01', '2017-08-01'));
var maximumTemperature = dataset.select('tmmx');
var maximumTemperatureVis = {
  min: -300.0,
  max: 300.0,
  palette: [
    '1a3678', '2955bc', '5699ff', '8dbae9', 'acd1ff', 'caebff', 'e5f9ff',
    'fdffb4', 'ffe6a2', 'ffc969', 'ffa12d', 'ff7c1f', 'ca531a', 'ff0000',
    'ab0000'
  ],
};
Map.setCenter(71.72, 52.48, 3);
Map.addLayer(maximumTemperature, maximumTemperatureVis, 'Maximum Temperature');


相关文章
|
6月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2479 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
222 0
|
6月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
567 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
6月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
111 0
|
6月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
88 0
|
6月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
143 0
|
6月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
77 0
|
6月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
263 0
|
6月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
127 0
|
6月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
124 0

热门文章

最新文章