Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_HCHO)大气甲醛 (HCHO) 浓度的离线高分辨率数据集

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: Google Earth Engine ——数据全解析专辑(COPERNICUS/S5P/OFFL/L3_HCHO)大气甲醛 (HCHO) 浓度的离线高分辨率数据集

OFFL/L3_HCHO

 

This dataset provides offline high-resolution imagery of atmospheric formaldehyde (HCHO) concentrations.


Formaldehyde is an intermediate gas in almost all oxidation chains of non-methane volatile organic compounds (NMVOC), leading eventually to CO2. Non-Methane Volatile Organic Compounds (NMVOCs) are, together with NOx, CO and CH4, among the most important precursors of tropospheric O3. The major HCHO source in the remote atmosphere is CH4 oxidation. Over the continents, the oxidation of higher NMVOCs emitted from vegetation, fires, traffic and industrial sources results in important and localized enhancements of the HCHO levels. The seasonal and inter-annual variations of the formaldehyde distribution are principally related to temperature changes and fire events, but also to changes in anthropogenic activities. HCHO concentrations in the boundary layer can be directly related to the release of short-lived hydrocarbons, which mostly cannot be observed directly from space. [More information]

OFFL/L3_HCHO


该数据集提供了大气甲醛 (HCHO) 浓度的离线高分辨率图像。


甲醛是几乎所有非甲烷挥发性有机化合物 (NMVOC) 氧化链中的中间气体,最终会导致 CO2。非甲烷挥发性有机化合物 (NMVOC) 与 NOx、CO 和 CH4 一起,是对流层 O3 最重要的前体。偏远大气中的主要 HCHO 来源是 CH4 氧化。在各大洲,植被、火灾、交通和工业源排放的较高 NMVOC 的氧化导致 HCHO 水平的重要和局部提高。甲醛分布的季节性和年际变化主要与温度变化和火灾事件有关,但也与人为活动的变化有关。边界层中的 HCHO 浓度可能与短寿命碳氢化合物的释放直接相关,而这些碳氢化合物大多无法直接从太空中观察到。 [更多信息]

Dataset Availability

2018-12-05T12:14:36 - 2021-09-04T00:00:00

Dataset Provider

European Union/ESA/Copernicus

Collection Snippet

ee.ImageCollection("COPERNICUS/S5P/OFFL/L3_HCHO")

Resolution

0.01 degrees

Bands Table

Name Description Min* Max* Units
tropospheric_HCHO_column_number_density Tropospheric HCHO column number density. -0.0172 0.0074 mol/m^2
tropospheric_HCHO_column_number_density_amf Tropospheric air mass factor. 0.177 4.058 mol/m^2
HCHO_slant_column_number_density HCHO slant column number density. -0.01425 0.00735 mol/m^2
cloud_fraction Effective cloud fraction. See the [Sentinel 5P L2 Input/Output Data Definition Spec](https://sentinels.copernicus.eu/documents/247904/3119978/Sentinel-5P-Level-2-Input-Output-Data-Definition), p.220. 0 1 fraction
sensor_azimuth_angle Azimuth angle of the satellite at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
sensor_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 0.098 66.57 degrees
solar_azimuth_angle Azimuth angle of the Sun at the ground pixel location (WGS84); angle measured East-of-North. -180 180 degrees
solar_zenith_angle Zenith angle of the satellite at the ground pixel location (WGS84); angle measured away from the vertical. 8.76 101.17 degrees


* = Values are estimated

Name Type Description
ALGORITHM_VERSION String The algorithm version used in L2 processing. It's separate from the processor (framework) version, to accommodate different release schedules for different products.
BUILD_DATE String The date, expressed as milliseconds since 1 Jan 1970, when the software used to perform L2 processing was built.
HARP_VERSION Int The version of the HARP tool used to grid the L2 data into an L3 product.
INSTITUTION String The institution where data processing from L1 to L2 was performed.
L3_PROCESSING_TIME Int The date, expressed as milliseconds since 1 Jan 1970, when Google processed the L2 data into L3 using harpconvert.
LAT_MAX Double The maximum latitude of the asset (degrees).
LAT_MIN Double The minimum latitude of the asset (degrees).
LON_MAX Double The maximum longitude of the asset (degrees).
LON_MIN Double The minimum longitude of the asset (degrees).
ORBIT Int The orbit number of the satellite when the data was acquired.
PLATFORM String Name of the platform which acquired the data.
PROCESSING_STATUS String The processing status of the product on a global level, mainly based on the availability of auxiliary input data. Possible values are "Nominal" and "Degraded".
PROCESSOR_VERSION String The version of the software used for L2 processing, as a string of the form "major.minor.patch".
PRODUCT_ID String Id of the L2 product used to generate this asset.
PRODUCT_QUALITY String Indicator that specifies whether the product quality is degraded or not. Allowed values are "Degraded" and "Nominal".
SENSOR String Name of the sensor which acquired the data.
SPATIAL_RESOLUTION String Spatial resolution at nadir. For most products this is `3.5x7km2`, except for `L2__O3__PR`, which uses `28x21km2`, and `L2__CO____` and `L2__CH4___`, which both use `7x7km2`. This attribute originates from the CCI standard.
TIME_REFERENCE_DAYS_SINCE_1950 Int Days from 1 Jan 1950 to when the data was acquired.
TIME_REFERENCE_JULIAN_DAY Double The Julian day number when the data was acquired.
TRACKING_ID String UUID for the L2 product file.


CLOSEIMPORT

代码:

var collection = ee.ImageCollection('COPERNICUS/S5P/NRTI/L3_HCHO')
  .select('tropospheric_HCHO_column_number_density')
  .filterDate('2019-06-01', '2019-06-06');
var band_viz = {
  min: 0.0,
  max: 0.0003,
  palette: ['black', 'blue', 'purple', 'cyan', 'green', 'yellow', 'red']
};
Map.addLayer(collection.mean(), band_viz, 'S5P HCHO');
Map.setCenter(0.0, 0.0, 2);


影像:


相关文章
|
5月前
|
存储 数据库 Android开发
🔥Android Jetpack全解析!拥抱Google官方库,让你的开发之旅更加顺畅无阻!🚀
【7月更文挑战第28天】在Android开发中追求高效稳定的路径?Android Jetpack作为Google官方库集合,是你的理想选择。它包含多个独立又协同工作的库,覆盖UI到安全性等多个领域,旨在减少样板代码,提高开发效率与应用质量。Jetpack核心组件如LiveData、ViewModel、Room等简化了数据绑定、状态保存及数据库操作。引入Jetpack只需在`build.gradle`中添加依赖。例如,使用Room进行数据库操作变得异常简单,从定义实体到实现CRUD操作,一切尽在掌握之中。拥抱Jetpack,提升开发效率,构建高质量应用!
96 4
|
6月前
|
Java 数据库连接
提升编程效率的利器: 解析Google Guava库之IO工具类(九)
提升编程效率的利器: 解析Google Guava库之IO工具类(九)
|
6月前
|
缓存 Java Maven
深入解析Google Guava库与Spring Retry重试框架
深入解析Google Guava库与Spring Retry重试框架
|
6月前
|
监控 安全 算法
提升编程效率的利器: 解析Google Guava库之RateLimiter优雅限流(十)
提升编程效率的利器: 解析Google Guava库之RateLimiter优雅限流(十)
|
6月前
|
缓存 安全 Java
提升编程效率的利器: 解析Google Guava库之集合工具类-50个示例(八)
提升编程效率的利器: 解析Google Guava库之集合工具类-50个示例(八)
|
6月前
|
缓存 算法 Java
提升编程效率的利器: 解析Google Guava库之常用工具类-40个示例(七)
提升编程效率的利器: 解析Google Guava库之常用工具类-40个示例(七)
|
6月前
|
存储
提升编程效率的利器: 解析Google Guava库之集合篇RangeMap范围映射(六)
提升编程效率的利器: 解析Google Guava库之集合篇RangeMap范围映射(六)
|
7月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2712 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
7月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
103 0
|
7月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
168 0

推荐镜像

更多