Hive底层原理:explain执行计划详解(二)

简介: 不懂hive中的explain,说明hive还没入门,学会explain,能够给我们工作中使用hive带来极大的便利!

2. group by 分组语句会进行排序吗?


看下面这条sql


select id,max(user_name) from test1 group by id;


问:group by 分组语句会进行排序吗


直接来看 explain 之后结果 (为了适应页面展示,仅截取了部分输出信息)


TableScan
    alias: test1
    Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
    Select Operator
        expressions: id (type: int), user_name (type: string)
        outputColumnNames: id, user_name
        Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
        Group By Operator
           aggregations: max(user_name)
           keys: id (type: int)
           mode: hash
           outputColumnNames: _col0, _col1
           Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
           Reduce Output Operator
             key expressions: _col0 (type: int)
             sort order: +
             Map-reduce partition columns: _col0 (type: int)
             Statistics: Num rows: 9 Data size: 108 Basic stats: COMPLETE Column stats: NONE
             value expressions: _col1 (type: string)
 ...


我们看 Group By Operator,里面有 keys: id (type: int) 说明按照 id 进行分组的,再往下看还有 sort order: + ,说明是按照 id 字段进行正序排序的。


3. 哪条sql执行效率高呢?


观察两条sql语句


SELECT
  a.id,
  b.user_name
FROM
  test1 a
JOIN test2 b ON a.id = b.id
WHERE
  a.id > 2;
SELECT
  a.id,
  b.user_name
FROM
  (SELECT * FROM test1 WHERE id > 2) a
JOIN test2 b ON a.id = b.id;


这两条sql语句输出的结果是一样的,但是哪条sql执行效率高呢


有人说第一条sql执行效率高,因为第二条sql有子查询,子查询会影响性能


有人说第二条sql执行效率高,因为先过滤之后,在进行join时的条数减少了,所以执行效率就高了


到底哪条sql效率高呢,我们直接在sql语句前面加上 explain,看下执行计划不就知道了嘛


在第一条sql语句前加上 explain,得到如下结果


hive (default)> explain select a.id,b.user_name from test1 a join test2 b on a.id=b.id where a.id >2;
OK
Explain
STAGE DEPENDENCIES:
  Stage-4 is a root stage
  Stage-3 depends on stages: Stage-4
  Stage-0 depends on stages: Stage-3
STAGE PLANS:
  Stage: Stage-4
    Map Reduce Local Work
      Alias -> Map Local Tables:
        $hdt$_0:a
          Fetch Operator
            limit: -1
      Alias -> Map Local Operator Tree:
        $hdt$_0:a
          TableScan
            alias: a
            Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
            Filter Operator
              predicate: (id > 2) (type: boolean)
              Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
              Select Operator
                expressions: id (type: int)
                outputColumnNames: _col0
                Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
                HashTable Sink Operator
                  keys:
                    0 _col0 (type: int)
                    1 _col0 (type: int)
  Stage: Stage-3
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: b
            Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
            Filter Operator
              predicate: (id > 2) (type: boolean)
              Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
              Select Operator
                expressions: id (type: int), user_name (type: string)
                outputColumnNames: _col0, _col1
                Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
                Map Join Operator
                  condition map:
                       Inner Join 0 to 1
                  keys:
                    0 _col0 (type: int)
                    1 _col0 (type: int)
                  outputColumnNames: _col0, _col2
                  Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                  Select Operator
                    expressions: _col0 (type: int), _col2 (type: string)
                    outputColumnNames: _col0, _col1
                    Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                    File Output Operator
                      compressed: false
                      Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                      table:
                          input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                          output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                          serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
      Local Work:
        Map Reduce Local Work
  Stage: Stage-0
    Fetch Operator
      limit: -1
      Processor Tree:
        ListSink


在第二条sql语句前加上 explain,得到如下结果


hive (default)> explain select a.id,b.user_name from(select * from  test1 where id>2 ) a join test2 b on a.id=b.id;
OK
Explain
STAGE DEPENDENCIES:
  Stage-4 is a root stage
  Stage-3 depends on stages: Stage-4
  Stage-0 depends on stages: Stage-3
STAGE PLANS:
  Stage: Stage-4
    Map Reduce Local Work
      Alias -> Map Local Tables:
        $hdt$_0:test1
          Fetch Operator
            limit: -1
      Alias -> Map Local Operator Tree:
        $hdt$_0:test1
          TableScan
            alias: test1
            Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
            Filter Operator
              predicate: (id > 2) (type: boolean)
              Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
              Select Operator
                expressions: id (type: int)
                outputColumnNames: _col0
                Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
                HashTable Sink Operator
                  keys:
                    0 _col0 (type: int)
                    1 _col0 (type: int)
  Stage: Stage-3
    Map Reduce
      Map Operator Tree:
          TableScan
            alias: b
            Statistics: Num rows: 6 Data size: 75 Basic stats: COMPLETE Column stats: NONE
            Filter Operator
              predicate: (id > 2) (type: boolean)
              Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
              Select Operator
                expressions: id (type: int), user_name (type: string)
                outputColumnNames: _col0, _col1
                Statistics: Num rows: 2 Data size: 25 Basic stats: COMPLETE Column stats: NONE
                Map Join Operator
                  condition map:
                       Inner Join 0 to 1
                  keys:
                    0 _col0 (type: int)
                    1 _col0 (type: int)
                  outputColumnNames: _col0, _col2
                  Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                  Select Operator
                    expressions: _col0 (type: int), _col2 (type: string)
                    outputColumnNames: _col0, _col1
                    Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                    File Output Operator
                      compressed: false
                      Statistics: Num rows: 2 Data size: 27 Basic stats: COMPLETE Column stats: NONE
                      table:
                          input format: org.apache.hadoop.mapred.SequenceFileInputFormat
                          output format: org.apache.hadoop.hive.ql.io.HiveSequenceFileOutputFormat
                          serde: org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe
      Local Work:
        Map Reduce Local Work
  Stage: Stage-0
    Fetch Operator
      limit: -1
      Processor Tree:
        ListSink


大家有什么发现,除了表别名不一样,其他的执行计划完全一样,都是先进行 where 条件过滤,在进行 join 条件关联。说明 hive 底层会自动帮我们进行优化,所以这两条sql语句执行效率是一样的。


最后


以上仅列举了3个我们生产中既熟悉又有点迷糊的例子,explain 还有很多其他的用途,如查看stage的依赖情况、排查数据倾斜、hive 调优等,小伙伴们可以自行尝试。

相关文章
|
7月前
|
SQL HIVE
Hive sql 执行原理
Hive sql 执行原理
77 0
|
SQL 存储 分布式计算
|
SQL 存储 分布式计算
Hive底层原理:explain执行计划详解(一)
不懂hive中的explain,说明hive还没入门,学会explain,能够给我们工作中使用hive带来极大的便利!
927 0
|
5天前
|
SQL 存储 分布式计算
了解Hive 工作原理:Hive 是如何工作的?
Apache Hive 是一个建立在 Hadoop 之上的分布式数据仓库系统,提供类 SQL 查询语言 HiveQL,便于用户进行大规模数据分析。Hive Metastore(HMS)是其关键组件,用于存储表和分区的元数据。Hive 将 SQL 查询转换为 MapReduce 任务执行,适合处理 PB 级数据,但查询效率较低,不适合实时分析。优点包括易于使用、可扩展性强;缺点则在于表达能力有限和不支持实时查询。
17 3
|
7月前
|
SQL HIVE
Hive【Hive学习大纲】【数据仓库+简介+工作原理】【自学阶段整理的xmind思维导图分享】【点击可放大看高清】
【4月更文挑战第6天】Hive【Hive学习大纲】【数据仓库+简介+工作原理】【自学阶段整理的xmind思维导图分享】【点击可放大看高清】
183 0
|
7月前
|
SQL 存储 编解码
Hive中的压缩技术是如何实现的?请解释其原理和常用压缩算法。
Hive中的压缩技术是如何实现的?请解释其原理和常用压缩算法。
79 0
|
SQL 存储 资源调度
Hive 架构、执行原理【重要】
Hive 架构、执行原理【重要】
150 0
|
SQL 分布式计算 关系型数据库
Hive Explain查看执行计划
Hive Explain查看执行计划
251 0
|
存储 SQL 分布式计算
工作常用之Hive 调优【三】 Explain 查看执行计划及建表优化
在查询时通过 WHERE 子句中的表达式选择查询所需要的指定的分区,这样的查询效率会提高很多,所以我们需要把常常用在 WHERE 语句中的字段指定为表的分区字段。
391 0
工作常用之Hive 调优【三】 Explain 查看执行计划及建表优化
|
SQL 缓存 分布式计算
《离线和实时大数据开发实战》(四)Hive 原理实践2
《离线和实时大数据开发实战》(四)Hive 原理实践2
338 0
《离线和实时大数据开发实战》(四)Hive 原理实践2