COW奶牛!Copy On Write机制了解一下

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 笔记

前言



在读《Redis设计与实现》关于哈希表扩容的时候,发现这么一段话:

执行BGSAVE命令或者BGREWRITEAOF命令的过程中,Redis需要创建当前服务器进程的子进程,而大多数操作系统都采用写时复制(copy-on-write)来优化子进程的使用效率,所以在子进程存在期间,服务器会提高负载因子的阈值,从而避免在子进程存在期间进行哈希表扩展操作,避免不必要的内存写入操作,最大限度地节约内存。

触及到知识的盲区了,于是就去搜了一下copy-on-write写时复制这个技术究竟是怎么样的。发现涉及的东西蛮多的,也挺难读懂的。于是就写下这篇笔记来记录一下我学习copy-on-write的过程。

本文力求简单讲清copy-on-write这个知识点,希望大家看完能有所收获。


一、Linux下的copy-on-write


在说明Linux下的copy-on-write机制前,我们首先要知道两个函数:fork()exec()。需要注意的是exec()并不是一个特定的函数, 它是一组函数的统称, 它包括了execl()execlp()execv()execle()execve()execvp()


1.1简单来用用fork


首先我们来看一下fork()函数是什么鬼:

fork is an operation whereby a process creates a copy of itself.

fork是类Unix操作系统上创建进程的主要方法。fork用于创建子进程(等同于当前进程的副本)。

  • 新的进程要通过老的进程复制自身得到,这就是fork!

如果接触过Linux,我们会知道Linux下init进程是所有进程的爹(相当于Java中的Object对象)

  • Linux的进程都通过init进程或init的子进程fork(vfork)出来的。

下面以例子说明一下fork吧:

#include <unistd.h>  
#include <stdio.h>  
int main ()   
{   
    pid_t fpid; //fpid表示fork函数返回的值  
    int count=0;
    // 调用fork,创建出子进程  
    fpid=fork();
    // 所以下面的代码有两个进程执行!
    if (fpid < 0)   
        printf("创建进程失败!/n");   
    else if (fpid == 0) {  
        printf("我是子进程,由父进程fork出来/n");   
        count++;  
    }  
    else {  
        printf("我是父进程/n");   
        count++;  
    }  
    printf("统计结果是: %d/n",count);  
    return 0;  
}

得到的结果输出为:

我是子进程,由父进程fork出来
统计结果是: 1
我是父进程
统计结果是: 1

解释一下:

  • fork作为一个函数被调用。这个函数会有两次返回,将子进程的PID返回给父进程,0返回给子进程。(如果小于0,则说明创建子进程失败)。
  • 再次说明:当前进程调用fork(),会创建一个跟当前进程完全相同的子进程(除了pid),所以子进程同样是会执行fork()之后的代码。

所以说:

  • 父进程在执行if代码块的时候,fpid变量的值是子进程的pid
  • 子进程在执行if代码块的时候,fpid变量的值是0


1.2再来看看exec()函数


从上面我们已经知道了fork会创建一个子进程。子进程的是父进程的副本

exec函数的作用就是:装载一个新的程序(可执行映像)覆盖当前进程内存空间中的映像,从而执行不同的任务

  • exec系列函数在执行时会直接替换掉当前进程的地址空间

我去画张图来理解一下:

30.jpg                                               exec函数的作用

参考资料:


3回头来看Linux下的COW是怎么一回事


fork()会产生一个和父进程完全相同的子进程(除了pid)

如果按传统的做法,会直接将父进程的数据拷贝到子进程中,拷贝完之后,父进程和子进程之间的数据段和堆栈是相互独立的

31.jpg                                          父进程的数据拷贝到子进程中

但是,以我们的使用经验来说:往往子进程都会执行exec()来做自己想要实现的功能。

  • 所以,如果按照上面的做法的话,创建子进程时复制过去的数据是没用的(因为子进程执行exec(),原有的数据会被清空)

既然很多时候复制给子进程的数据是无效的,于是就有了Copy On Write这项技术了,原理也很简单:

  • fork创建出的子进程,与父进程共享内存空间。也就是说,如果子进程不对内存空间进行写入操作的话,内存空间中的数据并不会复制给子进程,这样创建子进程的速度就很快了!(不用复制,直接引用父进程的物理空间)。
  • 并且如果在fork函数返回之后,子进程第一时间exec一个新的可执行映像,那么也不会浪费时间和内存空间了。

另外的表达方式:

在fork之后exec之前两个进程用的是相同的物理空间(内存区),子进程的代码段、数据段、堆栈都是指向父进程的物理空间,也就是说,两者的虚拟空间不同,但其对应的物理空间是同一个

当父子进程中有更改相应段的行为发生时,再为子进程相应的段分配物理空间

如果不是因为exec,内核会给子进程的数据段、堆栈段分配相应的物理空间(至此两者有各自的进程空间,互不影响),而代码段继续共享父进程的物理空间(两者的代码完全相同)。

而如果是因为exec,由于两者执行的代码不同,子进程的代码段也会分配单独的物理空间。

Copy On Write技术实现原理:

fork()之后,kernel把父进程中所有的内存页的权限都设为read-only,然后子进程的地址空间指向父进程。当父子进程都只读内存时,相安无事。当其中某个进程写内存时,CPU硬件检测到内存页是read-only的,于是触发页异常中断(page-fault),陷入kernel的一个中断例程。中断例程中,kernel就会把触发的异常的页复制一份,于是父子进程各自持有独立的一份。

Copy On Write技术好处是什么?

  • COW技术可减少分配和复制大量资源时带来的瞬间延时
  • COW技术可减少不必要的资源分配。比如fork进程时,并不是所有的页面都需要复制,父进程的代码段和只读数据段都不被允许修改,所以无需复制

Copy On Write技术缺点是什么?

  • 如果在fork()之后,父子进程都还需要继续进行写操作,那么会产生大量的分页错误(页异常中断page-fault),这样就得不偿失。

几句话总结Linux的Copy On Write技术:

  • fork出的子进程共享父进程的物理空间,当父子进程有内存写入操作时,read-only内存页发生中断,将触发的异常的内存页复制一份(其余的页还是共享父进程的)。
  • fork出的子进程功能实现和父进程是一样的。如果有需要,我们会用exec()把当前进程映像替换成新的进程文件,完成自己想要实现的功能。

参考资料:


二、解释一下Redis的COW


基于上面的基础,我们应该已经了解COW这么一项技术了。

下面我来说一下我对《Redis设计与实现》那段话的理解:

  • Redis在持久化时,如果是采用BGSAVE命令或者BGREWRITEAOF的方式,那Redis会fork出一个子进程来读取数据,从而写到磁盘中
  • 总体来看,Redis还是读操作比较多。如果子进程存在期间,发生了大量的写操作,那可能就会出现很多的分页错误(页异常中断page-fault),这样就得耗费不少性能在复制上。
  • 而在rehash阶段上,写操作是无法避免的。所以Redis在fork出子进程之后,将负载因子阈值提高,尽量减少写操作,避免不必要的内存写入操作,最大限度地节约内存。

参考资料:


三、文件系统的COW


下面来看看文件系统中的COW是啥意思:

Copy-on-write在对数据进行修改的时候,不会直接在原来的数据位置上进行操作,而是重新找个位置修改,这样的好处是一旦系统突然断电,重启之后不需要做Fsck。好处就是能保证数据的完整性,掉电的话容易恢复

  • 比如说:要修改数据块A的内容,先把A读出来,写到B块里面去。如果这时候断电了,原来A的内容还在!

参考资料:


最后


最后我们再来看一下写时复制的思想(摘录自维基百科):

写入时复制(英语:Copy-on-write,简称COW)是一种计算机程序设计领域的优化策略。其核心思想是,如果有多个调用者(callers)同时请求相同资源(如内存或磁盘上的数据存储),他们会共同获取相同的指针指向相同的资源,直到某个调用者试图修改资源的内容时,系统才会真正复制一份专用副本(private copy)给该调用者,而其他调用者所见到的最初的资源仍然保持不变。这过程对其他的调用者都是透明的(transparently)。此作法主要的优点是如果调用者没有修改该资源,就不会有副本(private copy)被建立,因此多个调用者只是读取操作时可以共享同一份资源。

至少从本文我们可以总结出:

  • Linux通过Copy On Write技术极大地减少了Fork的开销
  • 文件系统通过Copy On Write技术一定程度上保证数据的完整性

其实在Java里边,也有Copy On Write技术。

32.jpg

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
存储 缓存 编解码
RCU(Read Copy Update)十年计
作者:陈荣 查斌 马涛
1411 0
RCU(Read Copy Update)十年计
|
7月前
|
存储 缓存 算法
内存系列学习(四):Cache和Write Buffer一般性介绍
内存系列学习(四):Cache和Write Buffer一般性介绍
273 0
|
5月前
|
存储 C++ iOS开发
采用read()和write()读写二进制文件
C++ 中文本与二进制文件读写的区别在于数据存储格式和效率。文本文件以可读字符存储,浪费空间且不利于高效查找。二进制文件紧凑且高效,适合存储结构化数据如CStudent对象。`&gt;&gt;`和`&lt;&lt;`运算符适用于文本文件,而二进制文件需用`read()`和`write()`方法。`write()`从文件写指针位置写入数据,`read()`从文件读指针位置读取,两者都会移动指针。示例代码展示了如何使用这些方法处理学生信息。
61 12
|
7月前
|
存储 安全 Java
简单聊聊copy on write(写时复制)技术
简单聊聊copy on write(写时复制)技术
|
存储 缓存
【什么是Read Write Through机制】
【什么是Read Write Through机制】
158 0
|
存储 C++ iOS开发
C++ 采用read()和write()读写二进制文件
以文本形式读写文件和以二进制形式读写文件的区别,并掌握了用重载的 >> 和 << 运算符实现以文本形式读写文件。在此基础上,本节继续讲解如何以二进制形式读写文件。 举个例子,现在要做一个学籍管理程序,其中一个重要的工作就是记录学生的学号、姓名、年龄等信息。这意味着,我们需要用一个类来表示学生,如下所示: class CStudent { char szName[20]; //假设学生姓名不超过19个字符,以 '\0' 结尾 char szId[l0]; //假设学号为9位,以 '\0' 结尾 int age; //年龄
127 0
|
Unix
文件lseek操作产生空洞文件的方法
文件lseek操作产生空洞文件的方法
132 0
|
存储 Unix Java
Linux-Copy On Write写时复制机制初探
Linux-Copy On Write写时复制机制初探
161 0
|
NoSQL Java API
lettuce客户端底层bug(-READONLY You can‘t write against a read only replica.)
lettuce客户端底层、READONLY You can't write against a read only replica.
1471 0
lettuce客户端底层bug(-READONLY You can‘t write against a read only replica.)