传统的 Linux 操作系统的标准 I/O 接口是基于数据拷贝操作的,即 I/O 操作会导致数据在操作系统内核地址空间的缓冲区和应用程序地址空间定义的缓冲区之间进行传输。
这样做最大的好处是可以减少磁盘 I/O 的操作,因为如果所请求的数据已经存放在操作系统的高速缓冲存储器中,那么就不需要再进行实际的物理磁盘 I/O 操作。
但是数据传输过程中的数据拷贝操作却导致了极大的 CPU 开销,限制了操作系统有效进行数据传输操作的能力。
零拷贝( zero-copy )技术可以有效地改善数据传输的性能,在内核驱动程序(比如网络堆栈或者磁盘存储驱动程序)处理 I/O 数据的时候,零拷贝技术可以在某种程度上减少甚至完全避免不必要 CPU 数据拷贝操作。
所以问题来了。啥子是零拷贝( zero-copy )?
0.啥子是零拷贝( zero-copy )
零拷贝就是一种避免 CPU 将数据从一块存储拷贝到另外一块存储的技术。针对操作系统中的设备驱动程序、文件系统以及网络协议堆栈而出现的各种零拷贝技术极大地提升了特定应用程序的性能,并且使得这些应用程序可以更加有效地利用系统资源。
这种性能的提升就是通过在数据拷贝进行的同时,允许 CPU 执行其他的任务来实现的。
零拷贝技术可以减少数据拷贝和共享总线操作的次数,消除传输数据在存储器之间不必要的中间拷贝次数,从而有效地提高数据传输效率。 而且,零拷贝技术减少了用户应用程序地址空间和操作系统内核地址空间之间因为上下文切换而带来的开销。
进行大量的数据拷贝操作其实是一件简单的任务,从操作系统的角度来说,如果 CPU 一直被占用着去执行这项简单的任务,那么这将会是很浪费资源的;如果有其他比较简单的系统部件可以代劳这件事情,从而使得 CPU 解脱出来可以做别的事情,那么系统资源的利用则会更加有效。综上所述,零拷贝技术的目标可以概括如下:
- 避免数据拷贝
- ①避免操作系统内核缓冲区之间进行数据拷贝操作。
- ②避免操作系统内核和用户应用程序地址空间这两者之间进行数据拷贝操作。
- ③用户应用程序可以避开操作系统直接访问硬件存储。
- ④数据传输尽量让 DMA 来做。
将多种操作结合在一起
- ①避免不必要的系统调用和上下文切换。
- ②需要拷贝的数据可以先被缓存起来。
- ③对数据进行处理尽量让硬件来做。
接下来就探讨Linux中主要的几种零拷贝技术以及零拷贝技术适用的场景。为了迅速建立起零拷贝的概念,我们拿一个常用的场景进行引入:
1.前言
Linux系统中一切皆文件,仔细想一下Linux系统的很多活动无外乎读操作和写操作,零拷贝就是为了提高读写性能而出现的。
2. 数据拷贝基础过程
在Linux系统内部缓存和内存容量都是有限的,更多的数据都是存储在磁盘中。
对于Web服务器来说,经常需要从磁盘中读取数据到内存,然后再通过网卡传输给用户:
上述数据流转只是大框,接下来看看几种模式。
2.1 仅CPU方式
- 当应用程序需要读取磁盘数据时,调用read()从用户态陷入内核态,read()这个系统调用最终由CPU来完成;
- CPU向磁盘发起I/O请求,磁盘收到之后开始准备数据;
- 磁盘将数据放到磁盘缓冲区之后,向CPU发起I/O中断,报告CPU数据已经Ready了;
- CPU收到磁盘控制器的I/O中断之后,开始拷贝数据,完成之后read()返回,再从内核态切换到用户态;
2.2 CPU&DMA方式
CPU的时间宝贵,让它做杂活就是浪费资源。
直接内存访问(Direct Memory Access),是一种硬件设备绕开CPU独立直接访问内存的机制。所以DMA在一定程度上解放了CPU,把之前CPU的杂活让硬件直接自己做了,提高了CPU效率。
目前支持DMA的硬件包括:网卡、声卡、显卡、磁盘控制器等。
有了DMA的参与之后的流程发生了一些变化:
最主要的变化是,CPU不再和磁盘直接交互,而是DMA和磁盘交互并且将数据从磁盘缓冲区拷贝到内核缓冲区,之后的过程类似。
“【敲黑板】无论从仅CPU方式和DMA&CPU方式,都存在多次冗余数据拷贝和内核态&用户态的切换。 ”
我们继续思考Web服务器读取本地磁盘文件数据再通过网络传输给用户的详细过程。
3.普通模式数据交互
一次完成的数据交互包括几个部分:系统调用syscall、CPU、DMA、网卡、磁盘等。
系统调用syscall是应用程序和内核交互的桥梁,每次进行调用/返回就会产生两次切换:
调用syscall 从用户态切换到内核态
syscall返回 从内核态切换到用户态
来看下完整的数据拷贝过程简图:
- 读数据过程:
- 应用程序要读取磁盘数据,调用read()函数从而实现用户态切换内核态,这是第1次状态切换;
- DMA控制器将数据从磁盘拷贝到内核缓冲区,这是第1次DMA拷贝;
- CPU将数据从内核缓冲区复制到用户缓冲区,这是第1次CPU拷贝;
- CPU完成拷贝之后,read()函数返回实现用户态切换用户态,这是第2次状态切换;
- 写数据过程:
- 应用程序要向网卡写数据,调用write()函数实现用户态切换内核态,这是第1次切换;
- CPU将用户缓冲区数据拷贝到内核缓冲区,这是第1次CPU拷贝;
- DMA控制器将数据从内核缓冲区复制到socket缓冲区,这是第1次DMA拷贝;
- 完成拷贝之后,write()函数返回实现内核态切换用户态,这是第2次切换;
- 综上所述:
- 读过程涉及2次空间切换、1次DMA拷贝、1次CPU拷贝;
- 写过程涉及2次空间切换、1次DMA拷贝、1次CPU拷贝;
可见传统模式下,涉及多次空间切换和数据冗余拷贝,效率并不高,接下来就该零拷贝技术出场了。
4. 零拷贝技术
4.1 出现原因
我们可以看到,如果应用程序不对数据做修改,从内核缓冲区到用户缓冲区,再从用户缓冲区到内核缓冲区。两次数据拷贝都需要CPU的参与,并且涉及用户态与内核态的多次切换,加重了CPU负担。
我们需要降低冗余数据拷贝、解放CPU,这也就是零拷贝Zero-Copy技术。
4.2 解决思路
目前来看,零拷贝技术的几个实现手段包括:mmap+write、sendfile、sendfile+DMA收集、splice等。
4.2.1 mmap方式
mmap是Linux提供的一种内存映射文件的机制,它实现了将内核中读缓冲区地址与用户空间缓冲区地址进行映射,从而实现内核缓冲区与用户缓冲区的共享。
这样就减少了一次用户态和内核态的CPU拷贝,但是在内核空间内仍然有一次CPU拷贝。
mmap对大文件传输有一定优势,但是小文件可能出现碎片,并且在多个进程同时操作文件时可能产生引发coredump的signal。
4.2.2 sendfile方式
mmap+write方式有一定改进,但是由系统调用引起的状态切换并没有减少。
sendfile系统调用是在 Linux 内核2.1版本中被引入,它建立了两个文件之间的传输通道。
sendfile方式只使用一个函数就可以完成之前的read+write 和 mmap+write的功能,这样就少了2次状态切换,由于数据不经过用户缓冲区,因此该数据无法被修改。
从图中可以看到,应用程序只需要调用sendfile函数即可完成,只有2次状态切换、1次CPU拷贝、2次DMA拷贝。
但是sendfile在内核缓冲区和socket缓冲区仍然存在一次CPU拷贝,或许这个还可以优化。
4.2.3 sendfile+DMA收集
Linux 2.4 内核对 sendfile 系统调用进行优化,但是需要硬件DMA控制器的配合。
升级后的sendfile将内核空间缓冲区中对应的数据描述信息(文件描述符、地址偏移量等信息)记录到socket缓冲区中。
DMA控制器根据socket缓冲区中的地址和偏移量将数据从内核缓冲区拷贝到网卡中,从而省去了内核空间中仅剩1次CPU拷贝。
这种方式有2次状态切换、0次CPU拷贝、2次DMA拷贝,但是仍然无法对数据进行修改,并且需要硬件层面DMA的支持,并且sendfile只能将文件数据拷贝到socket描述符上,有一定的局限性。
4.2.4 splice方式
splice系统调用是Linux 在 2.6 版本引入的,其不需要硬件支持,并且不再限定于socket上,实现两个普通文件之间的数据零拷贝。
splice 系统调用可以在内核缓冲区和socket缓冲区之间建立管道来传输数据,避免了两者之间的 CPU 拷贝操作。
splice也有一些局限,它的两个文件描述符参数中有一个必须是管道设备。
5.本文小结
本文通过介绍数据交互的基本过程、传统模式的缺点,进而介绍了零拷贝的一些实现方法。
零拷贝技术是非常底层且重要的读写优化,对于服务并发能力的提升有很大帮助。
感谢前辈优秀blog,原文内容更精彩。
原文链接: