Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output
15
#include <stdio.h> #include <string.h> #include <stdlib.h> int a[2000]; int dp[150][150]; int main(){ int n; while(scanf("%d",&n)==1){ int t; memset(dp,0,sizeof(dp)); for(int i=1;i<=n;i++){ for(int j=1;j<=n;j++){ scanf("%d",&t); dp[i][j]=t+dp[i-1][j]; /// printf("i=%d",i); } } // for(int i=0;i<=n;i++){ // for(int j=0;j<=n;j++){ // printf("%4d",dp[i][j]); // } // printf("\n"); // } int maxx=-1000; for(int i=1;i<=n;i++){ for(int j=i;j<=n;j++){ int sum=0; for(int k=1;k<=n;k++){ t=dp[j][k]-dp[i-1][k]; sum+=t; if(sum<0) sum=0; if(sum>maxx) maxx=sum; } } } printf("%d\n",maxx); } return 0; }