Problem Description
The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
Input
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 … nm where m is the number of integers in the set and n1 … nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
Output
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
Sample Input
2
3 5 7 15
6 4 10296 936 1287 792 1
Sample Output
105
10296
也就是求最小公倍数
/**题意: 求输入的所有数最小公倍数。 思路: 先用 欧几里德定理 求两个数的最小公倍数,所得的公倍数再与下一个数求最小公倍数。 **/ #include <stdio.h> #include <stdlib.h> int gcd(int a,int b)//欧几里德求最大公约数 { if(b==0) return a; return gcd(b,a%b); } int main() { int t,n,m,i,a,b; scanf("%d",&t); while(t--) { scanf("%d%d",&n,&m); a=m; for(i=1;i<n;i++) { scanf("%d",&m); if(a<m) { b=a;a=m;m=b; } a=a/gcd(a,m)*m;//最小公倍数=两数之积/最大公约数 } printf("%d\n",a); } return 0; }