数据结构从入门到精通(第六篇) :堆的应用和深度解析(解决Top-K问题)

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 数据结构从入门到精通(第六篇) :堆的应用和深度解析(解决Top-K问题)

什么是Top-K问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。


在生活中的运用

image.png


image.png

如果只是数据比较少的,我们可以排序找到前几的数据,但是实际应用中我们时常都会面对海量的数据,大到内存无法全部加载,这就需要我们用数据结构中的堆来解决


基本思路

用数据集合中前K个元素来建堆

前k个最大的元素,则建小堆

前k个最小的元素,则建大堆


用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。


时间复杂度的计算

image.png


然后要遍历数据,最坏的情况是每个元素都与堆顶比较并排序,需要堆化n次


每次最差都下调高度次,而高度为log(k),所以是O(nlog(k))


因此总复杂度是O(k+nlog(k)),也就是O(nlogk)


代码的实现

#include<stdio.h>
#include<stdlib.h>
void swap(int* a, int* b)
{
  int tem = *a;
  *a = *b;
  *b = tem;
}
void AdjustDown(int*  arr ,int n, int location) //在location位置向下调整
{
  int child = location * 2 + 1;
  while (child < n)
  {
  if (child + 1 < n && arr[child] > arr[child + 1])
  {
    child++;
  }
  if (arr[child] < arr[location]) //小堆
  {
    swap(&arr[child], &arr[location]);
    location = child;
    child = location * 2 + 1;
  }
  else
    break;
  }
}
int* TopK(int* arr, int k,int n)
{
  int* brr = (int*)malloc(sizeof(int) * k);
  for (int i = 0; i < k; i++)//先建堆
  {
  brr[i] = arr[i];
  }
  for (int i = (k-2)/2; i >=0; i--)
  {
  AdjustDown(brr, k, i);
  }
  for (int i = k; i < n; i++)
  {
  if (arr[i] > brr[0])
  {
    brr[0] = arr[i];
    AdjustDown(brr, k, 0);
  }
  }
  return brr;
}
int main()
{
  int arr[] = { 1,23,2,434,6,567,68,9 };
  int n = sizeof(arr) / sizeof(int);
  int k = 3;
  int* brr = TopK(arr, k,n);
  for (int i = 0; i < k; i++)
  {
  printf("%d ", brr[i]);
  }
  return 0;
}


测试结果:

image.png

需要注意的是输出的结果并未排好序

只是按堆的形式排好了


相关文章
|
3天前
|
存储 算法 Java
散列表的数据结构以及对象在JVM堆中的存储过程
本文介绍了散列表的基本概念及其在JVM中的应用,详细讲解了散列表的结构、对象存储过程、Hashtable的扩容机制及与HashMap的区别。通过实例和图解,帮助读者理解散列表的工作原理和优化策略。
14 1
散列表的数据结构以及对象在JVM堆中的存储过程
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
思通数科AI平台在尽职调查中的技术解析与应用
思通数科AI多模态能力平台结合OCR、NLP和深度学习技术,为IPO尽职调查、融资等重要交易环节提供智能化解决方案。平台自动识别、提取并分类海量文档,实现高效数据核验与合规性检查,显著提升审查速度和精准度,同时保障敏感信息管理和数据安全。
37 11
|
1天前
|
自然语言处理 并行计算 数据可视化
免费开源法律文档比对工具:技术解析与应用
这款免费开源的法律文档比对工具,利用先进的文本分析和自然语言处理技术,实现高效、精准的文档比对。核心功能包括文本差异检测、多格式支持、语义分析、批量处理及用户友好的可视化界面,广泛适用于法律行业的各类场景。
|
3天前
|
安全 编译器 PHP
PHP 8新特性解析与实践应用####
————探索PHP 8的创新功能及其在现代Web开发中的实际应用
|
1天前
|
前端开发 中间件 PHP
PHP框架深度解析:Laravel的魔力与实战应用####
【10月更文挑战第31天】 本文作为一篇技术深度好文,旨在揭开PHP领域璀璨明星——Laravel框架的神秘面纱。不同于常规摘要的概括性介绍,本文将直接以一段引人入胜的技术剖析开场,随后通过具体代码示例和实战案例,逐步引导读者领略Laravel在简化开发流程、提升代码质量及促进团队协作方面的卓越能力。无论你是PHP初学者渴望深入了解现代开发范式,还是经验丰富的开发者寻求优化项目架构的灵感,本文都将为你提供宝贵的见解与实践指导。 ####
|
6天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
65 9
|
2天前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。
|
4天前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
26 4
|
28天前
|
算法 程序员 索引
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
栈的基本概念、应用场景以及如何使用数组和单链表模拟栈,并展示了如何利用栈和中缀表达式实现一个综合计算器。
26 1
数据结构与算法学习七:栈、数组模拟栈、单链表模拟栈、栈应用实例 实现 综合计算器
|
8天前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!

推荐镜像

更多