【Android 异步操作】Handler 机制 ( MessageQueue 消息队列的阻塞机制 | Java 层机制 | native 层阻塞机制 | native 层解除阻塞机制 )(一)

简介: 【Android 异步操作】Handler 机制 ( MessageQueue 消息队列的阻塞机制 | Java 层机制 | native 层阻塞机制 | native 层解除阻塞机制 )(一)

一、MessageQueue 的 Java 层机制


之前在 【Android 异步操作】手写 Handler ( 消息队列 MessageQueue | 消息保存到链表 | 从链表中获取消息 ) 中 , 模仿 Android 的 MessageQueue 手写的 MessageQueue , 使用了如下同步机制 ,


从 消息队列 MessageQueue 中取出 消息 Message ,


如果当前链表为空 , 此时会 调用 wait 方法阻塞 , 直到消息入队时 , 链表中有了元素 , 会调用 notify 解除该阻塞 ;



在实际的 Android 中的 消息队列 MessageQueue 的同步机制 是在 native 层实现 的 ;


在创建 消息队列 MessageQueue 时 , 调用了 nativeInit() 方法 , 销毁 MessageQueue 时调用 nativeDestroy 方法 ;


如果调用 next 获取下一个消息时 , 如果当前消息队列 MessageQueue 中没有消息 , 此时需要阻塞 , 调用 nativePollOnce 即可实现在 native 阻塞线程 ;


 

// 初始化 MessageQueue 时调用的方法 
    private native static long nativeInit();
    // 销毁 MessageQueue 时调用的方法 
    private native static void nativeDestroy(long ptr);
    // 线程阻塞方法
    @UnsupportedAppUsage
    private native void nativePollOnce(long ptr, int timeoutMillis); /*non-static for callbacks*/
    // 线程唤醒方法 
    private native static void nativeWake(long ptr);
    private native static boolean nativeIsPolling(long ptr);
    private native static void nativeSetFileDescriptorEvents(long ptr, int fd, int events);
  // 此处初始化 MessageQueue , 调用了 nativeInit 方法 
    MessageQueue(boolean quitAllowed) {
        mQuitAllowed = quitAllowed;
        mPtr = nativeInit();
    }
  // 获取消息队列中的下一个消息 
    @UnsupportedAppUsage
    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }
        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }
    // 此处阻塞线程 
            nativePollOnce(ptr, nextPollTimeoutMillis);
        }
    }






二、MessageQueue 的 native 层阻塞机制


线程阻塞方法 private native void nativePollOnce(long ptr, int timeoutMillis) , 是 native 方法 , 该方法在 frameworks/base/core/jni/android_os_MessageQueue.cpp 中实现 ,


从 Java 层传入 long 类型 , 然后转为 NativeMessageQueue* 类型指针 ,


该 Java 层传入的 long 类型是初始化消息队列时 , 由 nativeInit 方法返回 , 是 消息队列在 Native 层的指针 ,


之后 NativeMessageQueue 指针调用了其本身的 pollOnce 函数 , 该函数中 , 主要调用了 Looper 的 pollOnce 函数 , mLooper->pollOnce(timeoutMillis) ;


frameworks/base/core/jni/android_os_MessageQueue.cpp 中阻塞相关源码 :


void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) {
    mPollEnv = env;
    mPollObj = pollObj;
    // 这是主要操作 
    mLooper->pollOnce(timeoutMillis);
    mPollObj = NULL;
    mPollEnv = NULL;
    if (mExceptionObj) {
        env->Throw(mExceptionObj);
        env->DeleteLocalRef(mExceptionObj);
        mExceptionObj = NULL;
    }
}
static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj,
        jlong ptr, jint timeoutMillis) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->pollOnce(env, obj, timeoutMillis);
}


参考 : frameworks/base/core/jni/android_os_MessageQueue.cpp



继续查看 Native 层 Looper.cpp 的 pollOnce 方法 ,


Looper.cpp 源码路径是 system/core/libutils/Looper.cpp ,


在该方法中 , 最终调用 Looper.cpp 的 pollInner 方法 ,


在 pollInner 方法中 , 调用了 epoll_wait 方法 , 该方法就是等待方法 , 在该方法中会监听 mEpollFd 文件句柄 ,


   

#include <sys/epoll.h>
       int epoll_wait(int epfd, struct epoll_event *events,
                      int maxevents, int timeout);
       int epoll_pwait(int epfd, struct epoll_event *events,
                      int maxevents, int timeout,
                      const sigset_t *sigmask);


参考 : epoll_wait



system/core/libutils/Looper.cpp 中阻塞相关源码 :


int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
    int result = 0;
    for (;;) {
        while (mResponseIndex < mResponses.size()) {
            const Response& response = mResponses.itemAt(mResponseIndex++);
            int ident = response.request.ident;
            if (ident >= 0) {
                int fd = response.request.fd;
                int events = response.events;
                void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE
                ALOGD("%p ~ pollOnce - returning signalled identifier %d: "
                        "fd=%d, events=0x%x, data=%p",
                        this, ident, fd, events, data);
#endif
                if (outFd != NULL) *outFd = fd;
                if (outEvents != NULL) *outEvents = events;
                if (outData != NULL) *outData = data;
                return ident;
            }
        }
        if (result != 0) {
#if DEBUG_POLL_AND_WAKE
            ALOGD("%p ~ pollOnce - returning result %d", this, result);
#endif
            if (outFd != NULL) *outFd = 0;
            if (outEvents != NULL) *outEvents = 0;
            if (outData != NULL) *outData = NULL;
            return result;
        }
        result = pollInner(timeoutMillis);
    }
}
int Looper::pollInner(int timeoutMillis) {
  // ... 
    int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);
}



参考 : system/core/libutils/Looper.cpp






三、MessageQueue 的 native 层解除阻塞机制


在 MessageQueue 消息队列的 Java 层 , 将 Message 消息插入到链表表头后 , 调用了 nativeWake 方法 , 唤醒了线程 , 即解除了阻塞 ;


public final class MessageQueue {
    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }
        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }
            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }
            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }
}



在 native 层的 frameworks/base/core/jni/android_os_MessageQueue.cpp 实现了上述


Java 层定义的 private native static void nativeWake(long ptr) 方法 ,


注册 JNI 方法方式是动态注册 , 注册的参数如下 , Java 层的 nativeWake 对应的 native 层方法是 android_os_MessageQueue_nativeWake 方法 ,


static const JNINativeMethod gMessageQueueMethods[] = {
    /* name, signature, funcPtr */
    { "nativeInit", "()J", (void*)android_os_MessageQueue_nativeInit },
    { "nativeDestroy", "(J)V", (void*)android_os_MessageQueue_nativeDestroy },
    { "nativePollOnce", "(JI)V", (void*)android_os_MessageQueue_nativePollOnce },
    { "nativeWake", "(J)V", (void*)android_os_MessageQueue_nativeWake },
    { "nativeIsPolling", "(J)Z", (void*)android_os_MessageQueue_nativeIsPolling },
    { "nativeSetFileDescriptorEvents", "(JII)V",
            (void*)android_os_MessageQueue_nativeSetFileDescriptorEvents },
};


参考 : frameworks/base/core/jni/android_os_MessageQueue.cpp



下面是 frameworks/base/core/jni/android_os_MessageQueue.cpp 中的相关方法实现 ,


在 android_os_MessageQueue_nativeWake 方法中调用了 本身的 wake 方法 ,


在 wake 方法中调用了 system/core/libutils/Looper.cpp 中的 wake 方法 ;


void NativeMessageQueue::wake() {
  // 此处调用了 Looper 的 wake 函数 
    mLooper->wake();
}
static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jlong ptr) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->wake();
}


参考 : frameworks/base/core/jni/android_os_MessageQueue.cpp



查看 system/core/libutils/Looper.cpp 中的 wake 方法 , 在该方法中 ,


ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t))) 代码说明 ,


向 mWakeEventFd 文件句柄写入了数据 ;


void Looper::wake() {
#if DEBUG_POLL_AND_WAKE
    ALOGD("%p ~ wake", this);
#endif
    uint64_t inc = 1;
    ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));
    if (nWrite != sizeof(uint64_t)) {
        if (errno != EAGAIN) {
            LOG_ALWAYS_FATAL("Could not write wake signal to fd %d: %s",
                    mWakeEventFd, strerror(errno));
        }
    }
}


参考 : system/core/libutils/Looper.cpp



阻塞的时候使用的是 mEpollFd 文件句柄 ,


唤醒的时候使用的是 mWakeEventFd 文件句柄 ,


下面分析这两个文件句柄之间的联系 ;



Looper 构造函数 , 调用了 rebuildEpollLocked() 方法 ,


在 rebuildEpollLocked 方法 中调用 mEpollFd = epoll_create(EPOLL_SIZE_HINT) , 创建了一个句柄 ,


调用 int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem) 注册事件监听 ,


注册 mEpollFd 句柄 , 监听 mWakeEventFd 句柄的 eventItem 事件 ,


监听的事件是 eventItem.events = EPOLLIN 事件 ,


该事件代表 , 向 mWakeEventFd 文件句柄写入数据 , 此时就对应解除 epoll_wait 阻塞 ;



system/core/libutils/Looper.cpp 中 Looper 构造函数 , rebuildEpollLocked 方法 :


Looper::Looper(bool allowNonCallbacks) :
        mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
        mPolling(false), mEpollFd(-1), mEpollRebuildRequired(false),
        mNextRequestSeq(0), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
    mWakeEventFd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC);
    LOG_ALWAYS_FATAL_IF(mWakeEventFd < 0, "Could not make wake event fd: %s",
                        strerror(errno));
    AutoMutex _l(mLock);
    rebuildEpollLocked();
}
void Looper::rebuildEpollLocked() {
    // Close old epoll instance if we have one.
    if (mEpollFd >= 0) {
#if DEBUG_CALLBACKS
        ALOGD("%p ~ rebuildEpollLocked - rebuilding epoll set", this);
#endif
        close(mEpollFd);
    }
    // Allocate the new epoll instance and register the wake pipe.
    // 创建句柄 
    mEpollFd = epoll_create(EPOLL_SIZE_HINT);
    LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance: %s", strerror(errno));
    struct epoll_event eventItem;
    memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union
    // 注册监听的事件
    eventItem.events = EPOLLIN;
    eventItem.data.fd = mWakeEventFd;
    // 注册事件监听 
    int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake event fd to epoll instance: %s",
                        strerror(errno));
    for (size_t i = 0; i < mRequests.size(); i++) {
        const Request& request = mRequests.valueAt(i);
        struct epoll_event eventItem;
        request.initEventItem(&eventItem);
        int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, request.fd, & eventItem);
        if (epollResult < 0) {
            ALOGE("Error adding epoll events for fd %d while rebuilding epoll set: %s",
                  request.fd, strerror(errno));
        }
    }
}



MessageQueue 消息队列是通过 Linux 的 epoll 机制实现的阻塞 ;


目录
相关文章
|
5月前
|
设计模式 人工智能 安全
AQS:Java 中悲观锁的底层实现机制
AQS(AbstractQueuedSynchronizer)是Java并发包中实现同步组件的基础工具,支持锁(如ReentrantLock、ReadWriteLock)和线程同步工具类(如CountDownLatch、Semaphore)等。Doug Lea设计AQS旨在抽象基础同步操作,简化同步组件构建。 使用AQS需实现`tryAcquire(int arg)`和`tryRelease(int arg)`方法以获取和释放资源,共享模式还需实现`tryAcquireShared(int arg)`和`tryReleaseShared(int arg)`。
255 32
AQS:Java 中悲观锁的底层实现机制
|
5月前
|
人工智能 Java 关系型数据库
Java——SPI机制详解
SPI(Service Provider Interface)是JDK内置的服务提供发现机制,主要用于框架扩展和组件替换。通过在`META-INF/services/`目录下定义接口实现类文件,Java程序可利用`ServiceLoader`动态加载服务实现。SPI核心思想是解耦,允许不同厂商为同一接口提供多种实现,如`java.sql.Driver`的MySQL与PostgreSQL实现。然而,SPI存在缺陷:需遍历所有实现并实例化,可能造成资源浪费;获取实现类方式不够灵活;多线程使用时存在安全问题。尽管如此,SPI仍是Java生态系统中实现插件化和模块化设计的重要工具。
159 0
|
3月前
|
人工智能 前端开发 安全
Java开发不可不知的秘密:类加载器实现机制
类加载器是Java中负责动态加载类到JVM的组件,理解其工作原理对开发复杂应用至关重要。本文详解类加载过程、双亲委派模型及常见类加载器,并介绍自定义类加载器的实现与应用场景。
189 4
|
5月前
|
Java 区块链 网络架构
酷阿鲸森林农场:Java 区块链系统中的 P2P 区块同步与节点自动加入机制
本文介绍了基于 Java 的去中心化区块链电商系统设计与实现,重点探讨了 P2P 网络在酷阿鲸森林农场项目中的应用。通过节点自动发现、区块广播同步及链校验功能,系统实现了无需中心服务器的点对点网络架构。文章详细解析了核心代码逻辑,包括 P2P 服务端监听、客户端广播新区块及节点列表自动获取等环节,并提出了消息签名验证、WebSocket 替代 Socket 等优化方向。该系统不仅适用于农业电商,还可扩展至教育、物流等领域,构建可信数据链条。
|
5月前
|
人工智能 JavaScript Java
Java反射机制及原理
本文介绍了Java反射机制的基本概念、使用方法及其原理。反射在实际项目中比代理更常用,掌握它可以提升编程能力并理解框架设计原理。文章详细讲解了获取Class对象的四种方式:对象.getClass()、类.class、Class.forName()和类加载器.loadClass(),并分析了Class.forName()与ClassLoader的区别。此外,还探讨了通过Class对象进行实例化、获取方法和字段等操作的具体实现。最后从JVM类加载机制角度解析了Class对象的本质及其与类和实例的关系,帮助读者深入理解Java反射的工作原理。
105 0
|
7月前
|
缓存 Dubbo Java
理解的Java中SPI机制
本文深入解析了JDK提供的Java SPI(Service Provider Interface)机制,这是一种基于接口编程、策略模式与配置文件组合实现的动态加载机制,核心在于解耦。文章通过具体示例介绍了SPI的使用方法,包括定义接口、创建配置文件及加载实现类的过程,并分析了其原理与优缺点。SPI适用于框架扩展或替换场景,如JDBC驱动加载、SLF4J日志实现等,但存在加载效率低和线程安全问题。
279 7
理解的Java中SPI机制
|
6月前
|
存储 Java 编译器
Java 中 .length 的使用方法:深入理解 Java 数据结构中的长度获取机制
本文深入解析了 Java 中 `.length` 的使用方法及其在不同数据结构中的应用。对于数组,通过 `.length` 属性获取元素数量;字符串则使用 `.length()` 方法计算字符数;集合类如 `ArrayList` 采用 `.size()` 方法统计元素个数。此外,基本数据类型和包装类不支持长度属性。掌握这些区别,有助于开发者避免常见错误,提升代码质量。
481 1
|
消息中间件 C语言 RocketMQ
消息队列 MQ操作报错合集之出现"Connection reset by peer"的错误,该如何处理
消息队列(MQ)是一种用于异步通信和解耦的应用程序间消息传递的服务,广泛应用于分布式系统中。针对不同的MQ产品,如阿里云的RocketMQ、RabbitMQ等,它们在实现上述场景时可能会有不同的特性和优势,比如RocketMQ强调高吞吐量、低延迟和高可用性,适合大规模分布式系统;而RabbitMQ则以其灵活的路由规则和丰富的协议支持受到青睐。下面是一些常见的消息队列MQ产品的使用场景合集,这些场景涵盖了多种行业和业务需求。
|
消息中间件 Java C语言
消息队列 MQ使用问题之在使用C++客户端和GBase的ESQL进行编译时出现core dump,该怎么办
消息队列(MQ)是一种用于异步通信和解耦的应用程序间消息传递的服务,广泛应用于分布式系统中。针对不同的MQ产品,如阿里云的RocketMQ、RabbitMQ等,它们在实现上述场景时可能会有不同的特性和优势,比如RocketMQ强调高吞吐量、低延迟和高可用性,适合大规模分布式系统;而RabbitMQ则以其灵活的路由规则和丰富的协议支持受到青睐。下面是一些常见的消息队列MQ产品的使用场景合集,这些场景涵盖了多种行业和业务需求。
|
11月前
|
消息中间件 存储 Kafka
MQ 消息队列核心原理,12 条最全面总结!
本文总结了消息队列的12个核心原理,涵盖消息顺序性、ACK机制、持久化及高可用性等内容。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。