CPU 的 cache 往往是分多级的金字塔模型,L1 最靠近 CPU,访问延迟最小,但 cache 的容量也最小。本文介绍如何测试多级 cache 的访存延迟,以及背后蕴含的计算机原理。
图源:https://cs.brown.edu/courses/csci1310/2020/assign/labs/lab4.html
Cache Latency
Wikichip[1] 提供了不同 CPU 型号的 cache 延迟,单位一般为 cycle,通过简单的运算,转换为 ns。以 skylake 为例,CPU 各级 cache 延迟的基准值为:
CPU Frequency:2654MHz (0.3768 nanosec/clock)
设计实验
1. naive thinking
申请一个 buffer,buffer size 为 cache 对应的大小,第一次遍历进行预热,将数据全部加载到 cache 中。第二次遍历统计耗时,计算每次 read 的延迟平均值。
代码实现 mem-lat.c 如下:
#include <sys/types.h> #include <stdlib.h> #include <stdio.h> #include <sys/mman.h> #include <sys/time.h> #include <unistd.h> #define ONE p = (char **)*p; #define FIVE ONE ONE ONE ONE ONE #define TEN FIVE FIVE #define FIFTY TEN TEN TEN TEN TEN #define HUNDRED FIFTY FIFTY static void usage() { printf("Usage: ./mem-lat -b xxx -n xxx -s xxx\n"); printf(" -b buffer size in KB\n"); printf(" -n number of read\n\n"); printf(" -s stride skipped before the next access\n\n"); printf("Please don't use non-decimal based number\n"); } int main(int argc, char* argv[]) { unsigned long i, j, size, tmp; unsigned long memsize = 0x800000; /* 1/4 LLC size of skylake, 1/5 of broadwell */ unsigned long count = 1048576; /* memsize / 64 * 8 */ unsigned int stride = 64; /* skipped amount of memory before the next access */ unsigned long sec, usec; struct timeval tv1, tv2; struct timezone tz; unsigned int *indices; while (argc-- > 0) { if ((*argv)[0] == '-') { /* look at first char of next */ switch ((*argv)[1]) { /* look at second */ case 'b': argv++; argc--; memsize = atoi(*argv) * 1024; break; case 'n': argv++; argc--; count = atoi(*argv); break; case 's': argv++; argc--; stride = atoi(*argv); break; default: usage(); exit(1); break; } } argv++; } char* mem = mmap(NULL, memsize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); // trick3: init pointer chasing, per stride=8 byte size = memsize / stride; indices = malloc(size * sizeof(int)); for (i = 0; i < size; i++) indices[i] = i; // trick 2: fill mem with pointer references for (i = 0; i < size - 1; i++) *(char **)&mem[indices[i]*stride]= (char*)&mem[indices[i+1]*stride]; *(char **)&mem[indices[size-1]*stride]= (char*)&mem[indices[0]*stride]; char **p = (char **) mem; tmp = count / 100; gettimeofday (&tv1, &tz); for (i = 0; i < tmp; ++i) { HUNDRED; //trick 1 } gettimeofday (&tv2, &tz); if (tv2.tv_usec < tv1.tv_usec) { usec = 1000000 + tv2.tv_usec - tv1.tv_usec; sec = tv2.tv_sec - tv1.tv_sec - 1; } else { usec = tv2.tv_usec - tv1.tv_usec; sec = tv2.tv_sec - tv1.tv_sec; } printf("Buffer size: %ld KB, stride %d, time %d.%06d s, latency %.2f ns\n", memsize/1024, stride, sec, usec, (sec * 1000000 + usec) * 1000.0 / (tmp *100)); munmap(mem, memsize); free(indices); }
这里用到了 3 个小技巧:
- HUNDRED 宏:通过宏展开,尽可能避免其他指令对访存的干扰。
- 二级指针:通过二级指针将buffer串起来,避免访存时计算偏移。
- char* 和 char** 为 8 字节,因此,stride 为 8。
测试方法:
#set -x work=./mem-lat buffer_size=1 stride=8 for i in `seq 1 15`; do taskset -ac 0 $work -b $buffer_size -s $stride buffer_size=$(($buffer_size*2)) done
测试结果如下:
//L1 Buffer size: 1 KB, stride 8, time 0.003921 s, latency 3.74 ns Buffer size: 2 KB, stride 8, time 0.003928 s, latency 3.75 ns Buffer size: 4 KB, stride 8, time 0.003935 s, latency 3.75 ns Buffer size: 8 KB, stride 8, time 0.003926 s, latency 3.74 ns Buffer size: 16 KB, stride 8, time 0.003942 s, latency 3.76 ns Buffer size: 32 KB, stride 8, time 0.003963 s, latency 3.78 ns //L2 Buffer size: 64 KB, stride 8, time 0.004043 s, latency 3.86 ns Buffer size: 128 KB, stride 8, time 0.004054 s, latency 3.87 ns Buffer size: 256 KB, stride 8, time 0.004051 s, latency 3.86 ns Buffer size: 512 KB, stride 8, time 0.004049 s, latency 3.86 ns Buffer size: 1024 KB, stride 8, time 0.004110 s, latency 3.92 ns //L3 Buffer size: 2048 KB, stride 8, time 0.004126 s, latency 3.94 ns Buffer size: 4096 KB, stride 8, time 0.004161 s, latency 3.97 ns Buffer size: 8192 KB, stride 8, time 0.004313 s, latency 4.11 ns Buffer size: 16384 KB, stride 8, time 0.004272 s, latency 4.07 ns
相比基准值,L1 延迟偏大,L2 和 L3 延迟偏小,不符合预期。
2. thinking with hardware: cache line
现代处理器,内存以 cache line 为粒度,组织在 cache 中。访存的读写粒度都是一个 cache line,最常见的缓存线大小是 64 字节。
如果我们简单的以 8 字节为粒度,顺序读取 128KB 的 buffer,假设数据命中的是 L2,那么数据就会被缓存到 L1,一个 cache line 其他的访存操作都只会命中 L1,从而导致我们测量的 L2 延迟明显偏小。
本文测试的 CPU,cacheline 大小 64 字节,只需将 stride 设为 64。
测试结果如下:
//L1 Buffer size: 1 KB, stride 64, time 0.003933 s, latency 3.75 ns Buffer size: 2 KB, stride 64, time 0.003930 s, latency 3.75 ns Buffer size: 4 KB, stride 64, time 0.003925 s, latency 3.74 ns Buffer size: 8 KB, stride 64, time 0.003931 s, latency 3.75 ns Buffer size: 16 KB, stride 64, time 0.003935 s, latency 3.75 ns Buffer size: 32 KB, stride 64, time 0.004115 s, latency 3.92 ns //L2 Buffer size: 64 KB, stride 64, time 0.007423 s, latency 7.08 ns Buffer size: 128 KB, stride 64, time 0.007414 s, latency 7.07 ns Buffer size: 256 KB, stride 64, time 0.007437 s, latency 7.09 ns Buffer size: 512 KB, stride 64, time 0.007429 s, latency 7.09 ns Buffer size: 1024 KB, stride 64, time 0.007650 s, latency 7.30 ns Buffer size: 2048 KB, stride 64, time 0.007670 s, latency 7.32 ns //L3 Buffer size: 4096 KB, stride 64, time 0.007695 s, latency 7.34 ns Buffer size: 8192 KB, stride 64, time 0.007786 s, latency 7.43 ns Buffer size: 16384 KB, stride 64, time 0.008172 s, latency 7.79 ns
虽然相比方案 1,L2 和 L3 的延迟有所增大,但还是不符合预期。
3. thinking with hardware: prefetch
现代处理器,通常支持预取(prefetch)。数据预取通过将代码中后续可能使用到的数据提前加载到 cache 中,减少 CPU 等待数据从内存中加载的时间,提升 cache 命中率,进而提升软件的运行效率。
Intel 处理器支持 4 种硬件预取 [2],可以通过 MSR 控制关闭和打开:
这里我们简单的将 stride 设为 128 和 256,避免硬件预取。测试的 L3 访存延迟明显增大:
// stride 128 Buffer size: 1 KB, stride 256, time 0.003927 s, latency 3.75 ns Buffer size: 2 KB, stride 256, time 0.003924 s, latency 3.74 ns Buffer size: 4 KB, stride 256, time 0.003928 s, latency 3.75 ns Buffer size: 8 KB, stride 256, time 0.003923 s, latency 3.74 ns Buffer size: 16 KB, stride 256, time 0.003930 s, latency 3.75 ns Buffer size: 32 KB, stride 256, time 0.003929 s, latency 3.75 ns Buffer size: 64 KB, stride 256, time 0.007534 s, latency 7.19 ns Buffer size: 128 KB, stride 256, time 0.007462 s, latency 7.12 ns Buffer size: 256 KB, stride 256, time 0.007479 s, latency 7.13 ns Buffer size: 512 KB, stride 256, time 0.007698 s, latency 7.34 ns Buffer size: 512 KB, stride 128, time 0.007597 s, latency 7.25 ns Buffer size: 1024 KB, stride 128, time 0.009169 s, latency 8.74 ns Buffer size: 2048 KB, stride 128, time 0.010008 s, latency 9.55 ns Buffer size: 4096 KB, stride 128, time 0.010008 s, latency 9.55 ns Buffer size: 8192 KB, stride 128, time 0.010366 s, latency 9.89 ns Buffer size: 16384 KB, stride 128, time 0.012031 s, latency 11.47 ns // stride 256 Buffer size: 512 KB, stride 256, time 0.007698 s, latency 7.34 ns Buffer size: 1024 KB, stride 256, time 0.012654 s, latency 12.07 ns Buffer size: 2048 KB, stride 256, time 0.025210 s, latency 24.04 ns Buffer size: 4096 KB, stride 256, time 0.025466 s, latency 24.29 ns Buffer size: 8192 KB, stride 256, time 0.025840 s, latency 24.64 ns Buffer size: 16384 KB, stride 256, time 0.027442 s, latency 26.17 ns
L3 的访存延迟基本上是符合预期的,但是 L1 和 L2 明显偏大。
如果测试随机访存延迟,更加通用的做法是,在将buffer指针串起来时,随机化一下。
// shuffle indices for (i = 0; i < size; i++) { j = i + rand() % (size - i); if (i != j) { tmp = indices[i]; indices[i] = indices[j]; indices[j] = tmp; } }
可以看到,测试结果与 stride 为 256 基本上是一样的。
Buffer size: 1 KB, stride 64, time 0.003942 s, latency 3.76 ns Buffer size: 2 KB, stride 64, time 0.003925 s, latency 3.74 ns Buffer size: 4 KB, stride 64, time 0.003928 s, latency 3.75 ns Buffer size: 8 KB, stride 64, time 0.003931 s, latency 3.75 ns Buffer size: 16 KB, stride 64, time 0.003932 s, latency 3.75 ns Buffer size: 32 KB, stride 64, time 0.004276 s, latency 4.08 ns Buffer size: 64 KB, stride 64, time 0.007465 s, latency 7.12 ns Buffer size: 128 KB, stride 64, time 0.007470 s, latency 7.12 ns Buffer size: 256 KB, stride 64, time 0.007521 s, latency 7.17 ns Buffer size: 512 KB, stride 64, time 0.009340 s, latency 8.91 ns Buffer size: 1024 KB, stride 64, time 0.015230 s, latency 14.53 ns Buffer size: 2048 KB, stride 64, time 0.027567 s, latency 26.29 ns Buffer size: 4096 KB, stride 64, time 0.027853 s, latency 26.56 ns Buffer size: 8192 KB, stride 64, time 0.029945 s, latency 28.56 ns Buffer size: 16384 KB, stride 64, time 0.034878 s, latency 33.26 ns
4. thinking with compiler: register keyword
解决掉 L3 偏小的问题后,我们继续看 L1 和 L2 偏大的原因。为了找出偏大的原因,我们先反汇编可执行程序,看看执行的汇编指令是否是我们想要的:
objdump -D -S mem-lat > mem-lat.s
-D
: Display assembler contents of all sections.-S
:Intermix source code with disassembly. (gcc编译时需使用-g
,生成调式信息)
生成的汇编文件 mem-lat.s:
char **p = (char **)mem; 400b3a: 48 8b 45 c8 mov -0x38(%rbp),%rax 400b3e: 48 89 45 d0 mov %rax,-0x30(%rbp) // push stack //... HUNDRED; 400b85: 48 8b 45 d0 mov -0x30(%rbp),%rax 400b89: 48 8b 00 mov (%rax),%rax 400b8c: 48 89 45 d0 mov %rax,-0x30(%rbp) 400b90: 48 8b 45 d0 mov -0x30(%rbp),%rax 400b94: 48 8b 00 mov (%rax),%rax
首先,变量 mem 赋值给变量 p,变量 p 压入栈-0x30(%rbp)
。
char **p = (char **)mem; 400b3a: 48 8b 45 c8 mov -0x38(%rbp),%rax 400b3e: 48 89 45 d0 mov %rax,-0x30(%rbp)
访存的逻辑:
HUNDRED; // p = (char **)*p 400b85: 48 8b 45 d0 mov -0x30(%rbp),%rax 400b89: 48 8b 00 mov (%rax),%rax 400b8c: 48 89 45 d0 mov %rax,-0x30(%rbp)
- 先从栈中读取指针变量 p 的值到
rax
寄存器(变量 p 的类型为char **
,是一个二级指针,也就是说,指针 p 指向一个char *
的变量,即 p 的值也是一个地址)。下图中变量 p 的值为 0x2000。 - 将
rax
寄存器指向变量的值读入rax
寄存器,对应单目运算*p
。下图中地址 0x2000的值为 0x3000,rax 更新为 0x3000。 - 将
rax
寄存器赋值给变量p。下图中变量p的值更新为0x3000。
根据反汇编的结果可以看到,期望的 1 条 move 指令被编译成了 3 条,cache 的延迟也就增加了 3 倍。
C 语言的 register 关键字,可以让编译器将变量保存到寄存器中,从而避免每次从栈中读取的开销。
It's a hint to the compiler that the variable will be heavily used and that you recommend it be kept in a processor register if possible.
我们在声明 p 时,加上 register 关键字。
register char **p = (char **)mem;
测试结果如下:
// L1 Buffer size: 1 KB, stride 64, time 0.000030 s, latency 0.03 ns Buffer size: 2 KB, stride 64, time 0.000029 s, latency 0.03 ns Buffer size: 4 KB, stride 64, time 0.000030 s, latency 0.03 ns Buffer size: 8 KB, stride 64, time 0.000030 s, latency 0.03 ns Buffer size: 16 KB, stride 64, time 0.000030 s, latency 0.03 ns Buffer size: 32 KB, stride 64, time 0.000030 s, latency 0.03 ns // L2 Buffer size: 64 KB, stride 64, time 0.000030 s, latency 0.03 ns Buffer size: 128 KB, stride 64, time 0.000030 s, latency 0.03 ns Buffer size: 256 KB, stride 64, time 0.000029 s, latency 0.03 ns Buffer size: 512 KB, stride 64, time 0.000030 s, latency 0.03 ns Buffer size: 1024 KB, stride 64, time 0.000030 s, latency 0.03 ns // L3 Buffer size: 2048 KB, stride 64, time 0.000030 s, latency 0.03 ns Buffer size: 4096 KB, stride 64, time 0.000029 s, latency 0.03 ns Buffer size: 8192 KB, stride 64, time 0.000030 s, latency 0.03 ns Buffer size: 16384 KB, stride 64, time 0.000030 s, latency 0.03 ns
访存延迟全部变为不足 1 ns,明显不符合预期。
5. thinking with compiler: Touch it!
重新反汇编,看看哪里出了问题,编译代码如下:
for (i = 0; i < tmp; ++i) { 40155e: 48 c7 45 f8 00 00 00 movq $0x0,-0x8(%rbp) 401565: 00 401566: eb 05 jmp 40156d <main+0x37e> 401568: 48 83 45 f8 01 addq $0x1,-0x8(%rbp) 40156d: 48 8b 45 f8 mov -0x8(%rbp),%rax 401571: 48 3b 45 b0 cmp -0x50(%rbp),%rax 401575: 72 f1 jb 401568 <main+0x379> HUNDRED; } gettimeofday (&tv2, &tz); 401577: 48 8d 95 78 ff ff ff lea -0x88(%rbp),%rdx 40157e: 48 8d 45 80 lea -0x80(%rbp),%rax 401582: 48 89 d6 mov %rdx,%rsi 401585: 48 89 c7 mov %rax,%rdi 401588: e8 e3 fa ff ff callq 401070 <gettimeofday@plt>
HUNDRED 宏没有产生任何汇编代码。涉及到变量 p 的语句,并没有实际作用,只是数据读取,大概率被编译器优化掉了。
register char **p = (char **) mem; tmp = count / 100; gettimeofday (&tv1, &tz); for (i = 0; i < tmp; ++i) { HUNDRED; } gettimeofday (&tv2, &tz); /* touch pointer p to prevent compiler optimization */ char **touch = p;
反汇编验证一下:
HUNDRED; 401570: 48 8b 1b mov (%rbx),%rbx 401573: 48 8b 1b mov (%rbx),%rbx 401576: 48 8b 1b mov (%rbx),%rbx 401579: 48 8b 1b mov (%rbx),%rbx 40157c: 48 8b 1b mov (%rbx),%rbx
HUNDRED 宏产生的汇编代码只有操作寄存器 rbx 的 mov 指令,高级。
延迟的测试结果如下:
// L1 Buffer size: 1 KB, stride 64, time 0.001687 s, latency 1.61 ns Buffer size: 2 KB, stride 64, time 0.001684 s, latency 1.61 ns Buffer size: 4 KB, stride 64, time 0.001682 s, latency 1.60 ns Buffer size: 8 KB, stride 64, time 0.001693 s, latency 1.61 ns Buffer size: 16 KB, stride 64, time 0.001683 s, latency 1.61 ns Buffer size: 32 KB, stride 64, time 0.001783 s, latency 1.70 ns // L2 Buffer size: 64 KB, stride 64, time 0.005896 s, latency 5.62 ns Buffer size: 128 KB, stride 64, time 0.005915 s, latency 5.64 ns Buffer size: 256 KB, stride 64, time 0.005955 s, latency 5.68 ns Buffer size: 512 KB, stride 64, time 0.007856 s, latency 7.49 ns Buffer size: 1024 KB, stride 64, time 0.014929 s, latency 14.24 ns // L3 Buffer size: 2048 KB, stride 64, time 0.026970 s, latency 25.72 ns Buffer size: 4096 KB, stride 64, time 0.026968 s, latency 25.72 ns Buffer size: 8192 KB, stride 64, time 0.028823 s, latency 27.49 ns Buffer size: 16384 KB, stride 64, time 0.033325 s, latency 31.78 ns
L1 延迟 1.61 ns,L2 延迟 5.62 ns,终于,符合预期!
写在最后
本文的思路和代码参考自 lmbench[3],和团队内其他同学的工具 mem-lat。最后给自己挖个坑,在随机化 buffer 指针时,没有考虑硬件 TLB miss 的影响,如果有读者有兴趣,待日后有空补充。
参考文献:
[1] https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server)
[2]https://software.intel.com/content/www/us/en/develop/articles/disclosure-of-hw-prefetcher-control-on-some-intel-processors.html
[3]McVoy L W, Staelin C. lmbench: Portable Tools for Performance Analysis[C]//USENIX annual technical conference. 1996: 279-294.
—— 完 ——
加入龙蜥社群
加入微信群:添加社区助理-龙蜥社区小龙(微信:openanolis_assis),备注【龙蜥】与你同在;加入钉钉群:扫描下方钉钉群二维码。欢迎开发者/用户加入龙蜥社区(OpenAnolis)交流,共同推进龙蜥社区的发展,一起打造一个活跃的、健康的开源操作系统生态!
关于龙蜥社区
龙蜥社区(OpenAnolis)是由企事业单位、高等院校、科研单位、非营利性组织、个人等在自愿、平等、开源、协作的基础上组成的非盈利性开源社区。龙蜥社区成立于 2020 年 9 月,旨在构建一个开源、中立、开放的Linux 上游发行版社区及创新平台。
龙蜥社区成立的短期目标是开发龙蜥操作系统(Anolis OS)作为 CentOS 停服后的应对方案,构建一个兼容国际 Linux 主流厂商的社区发行版。中长期目标是探索打造一个面向未来的操作系统,建立统一的开源操作系统生态,孵化创新开源项目,繁荣开源生态。
目前,龙蜥OS 8.4已发布,支持 X86_64 、Arm64、LoongArch 架构,完善适配飞腾、海光、兆芯、鲲鹏、龙芯等芯片,并提供全栈国密支持。
欢迎下载:https://openanolis.cn/download
加入我们,一起打造面向未来的开源操作系统!