【Netty】IO 模型简介 ( Netty 特点 | Netty 应用场景 | Java 三种 IO 模型 | BIO 模型 )(二)

简介: 【Netty】IO 模型简介 ( Netty 特点 | Netty 应用场景 | Java 三种 IO 模型 | BIO 模型 )(二)

VI . BIO 实例


1 . BIO 示例 :


① 服务器端 : 编写服务器端 , 监听 8888 端口 , 阻塞等待客户端连接 , 连接成功后 , 创建线程 , 线程中阻塞等待客户端发送请求数据 ;


② 客户端 : 编写一个客户端 , 请求服务器的 8888 端口号 , 客户端发送 “Hello World” 字符串给服务器端 ;


③ Telnet 客户端 : 使用 Telnet 客户端向上述服务器端 8888 端口 发送 “Hello World” 字符串请求 ;



2 . 服务器代码示例 :


package kim.hsl.bio;
import java.io.IOException;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class TCPServer {
    public static void main(String[] args) {
        try {
            //创建线程池
            ExecutorService threadPool = Executors.newCachedThreadPool();
            //创建服务器套接字
            ServerSocket serverSocket = new ServerSocket(8888);
            System.out.println("服务器启动,监听 8888 端口");
            while (true){
                //阻塞, 等待客户端连接请求 ( 此处是第一个阻塞点 )
                Socket socket = serverSocket.accept();
                System.out.println("客户端连接成功");
                //线程池启动线程
                threadPool.execute(new ClientRquest(socket));
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }
    /**
     * 与客户端交互类
     */
    static class ClientRquest implements Runnable {
        private Socket socket;
        public ClientRquest(Socket socket) {
            this.socket = socket;
        }
        @Override
        public void run() {
            try {
                clientRequest();
            } catch (IOException e) {
                e.printStackTrace();
            } finally {
                //最终要将 Socket 关闭, 如果出异常继续捕获
                try {
                    socket.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
        public void clientRequest() throws IOException {
            //获取输入流, 读取客户端写入的信息
            byte[] buffer = new byte[1024];
            InputStream is = socket.getInputStream();
            System.out.println("等到客户端请求");
            //此处会阻塞等待客户端的请求 ( 此处是第二个阻塞点 )
            int count = is.read(buffer);
            String request = new String(buffer, 0, count);
            System.out.println("客户端请求到达 : " + request);
        }
    }
}





3 . 客户端代码示例 :


package kim.hsl.bio;


import java.io.IOException;

import java.net.Inet4Address;

import java.net.InetSocketAddress;

import java.net.Socket;


public class TCPClient {

   public static void main(String[] args) {

       try {

           Socket socket = new Socket();

           InetSocketAddress inetSocketAddress =

                   new InetSocketAddress(

                           Inet4Address.getLocalHost(),   //本机IP地址

                           8888                      //端口号

                   );

           System.out.println("客户端开始连接 ...");

           //此处会阻塞等待连接成功

           socket.connect(inetSocketAddress);

           System.out.println("客户端连接成功");

           //连接成功后, 开始执行后续操作

           socket.getOutputStream().write("Hello World".getBytes());

           System.out.println("客户端写出 Hello World 成功");

       } catch (IOException e) {

           e.printStackTrace();

       }

   }

}


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

4 . 执行结果 :


① 启动服务器 :

image.png



② 启动客户端 :



image.png




③ 使用 Telnet 客户端测试 localhost 8888 端口 :


建立连接 : 在命令行工具中 , 使用 telnet localhost 8888 连接本机的 8888 端口 ;



连接成功后 , 按下 Ctrl + ] 快捷键 , 进入 Telnet 命令行 , 输入 send Hello World 命令 , 向本机的 8888 端口发送 Hello World 字符串 ;



服务器端显示 :


image.png





VII . BIO 模型实例分析


BIO 模型实例分析 : 针对上述 BIO 实例 , 从性能 , 线程个数 , 阻塞 等角度分析 BIO 模型 ;



① 线程维护个数 : 在服务器端 , 需要针对每个客户端连接都创建一个线程 , 有多少连接 , 就需要有多少线程 ;


② 性能分析 : 如果客户端数量很多 , 那么大量客户端同时连接 , 其并发数量很大 , 对系统的资源占用较高 ;


③ 阻塞分析 : BIO 模型中 , 服务器端有两处阻塞 , 一个是等待客户端连接 , 一个是连接后 , 等待客户端发出请求数据 , 后者的阻塞等待完全就是对资源的浪费 , 没有数据交互 , 一直占用资源 ;


目录
相关文章
|
3月前
|
人工智能 安全 Java
Java和Python在企业中的应用情况
Java和Python在企业中的应用情况
108 7
|
3月前
|
JSON Java Apache
非常实用的Http应用框架,杜绝Java Http 接口对接繁琐编程
UniHttp 是一个声明式的 HTTP 接口对接框架,帮助开发者快速对接第三方 HTTP 接口。通过 @HttpApi 注解定义接口,使用 @GetHttpInterface 和 @PostHttpInterface 等注解配置请求方法和参数。支持自定义代理逻辑、全局请求参数、错误处理和连接池配置,提高代码的内聚性和可读性。
263 3
|
28天前
|
Java 编译器 开发者
Java中的this关键字详解:深入理解与应用
本文深入解析了Java中`this`关键字的多种用法
113 9
|
28天前
|
Java 应用服务中间件 API
【潜意识Java】javaee中的SpringBoot在Java 开发中的应用与详细分析
本文介绍了 Spring Boot 的核心概念和使用场景,并通过一个实战项目演示了如何构建一个简单的 RESTful API。
38 5
|
28天前
|
人工智能 自然语言处理 搜索推荐
【潜意识Java】了解并详细分析Java与AIGC的结合应用和使用方式
本文介绍了如何将Java与AIGC(人工智能生成内容)技术结合,实现智能文本生成。
53 5
|
28天前
|
SQL Java 数据库连接
【潜意识Java】深入理解MyBatis,从基础到高级的深度细节应用
本文详细介绍了MyBatis,一个轻量级的Java持久化框架。内容涵盖MyBatis的基本概念、配置与环境搭建、基础操作(如创建实体类、Mapper接口及映射文件)以及CRUD操作的实现。此外,还深入探讨了高级特性,包括动态SQL和缓存机制。通过代码示例,帮助开发者更好地掌握MyBatis的使用技巧,提升数据库操作效率。总结部分强调了MyBatis的优势及其在实际开发中的应用价值。
32 1
|
2月前
|
安全 算法 Java
Java CAS原理和应用场景大揭秘:你掌握了吗?
CAS(Compare and Swap)是一种乐观锁机制,通过硬件指令实现原子操作,确保多线程环境下对共享变量的安全访问。它避免了传统互斥锁的性能开销和线程阻塞问题。CAS操作包含三个步骤:获取期望值、比较当前值与期望值是否相等、若相等则更新为新值。CAS广泛应用于高并发场景,如数据库事务、分布式锁、无锁数据结构等,但需注意ABA问题。Java中常用`java.util.concurrent.atomic`包下的类支持CAS操作。
80 2
|
3月前
|
人工智能 前端开发 Java
基于开源框架Spring AI Alibaba快速构建Java应用
本文旨在帮助开发者快速掌握并应用 Spring AI Alibaba,提升基于 Java 的大模型应用开发效率和安全性。
382 12
基于开源框架Spring AI Alibaba快速构建Java应用
|
3月前
|
缓存 Java 开发者
Java多线程并发编程:同步机制与实践应用
本文深入探讨Java多线程中的同步机制,分析了多线程并发带来的数据不一致等问题,详细介绍了`synchronized`关键字、`ReentrantLock`显式锁及`ReentrantReadWriteLock`读写锁的应用,结合代码示例展示了如何有效解决竞态条件,提升程序性能与稳定性。
354 6
|
2月前
|
监控 Java 数据库连接
Java线程管理:守护线程与用户线程的区分与应用
在Java多线程编程中,线程可以分为守护线程(Daemon Thread)和用户线程(User Thread)。这两种线程在行为和用途上有着明显的区别,了解它们的差异对于编写高效、稳定的并发程序至关重要。
64 2

热门文章

最新文章