二分类的评价指标总结

简介: 二分类的评价指标总结

混淆矩阵

真实值 1 真实值0
预测值 1 真正例 TP 伪正例 FP
预测值 0 伪反例 FN 真反例TN

ACC:classification accuracy,描述分类器的分类准确率
计算公式为:ACC=(TP+TN)/(TP+FP+FN+TN)
BER:balanced error rate
计算公式为:BER=1/2*(FPR+FN/(FN+TP))
TPR:true positive rate,描述识别出的所有正例占所有正例的比例
计算公式为:TPR=TP/ (TP+ FN)
FPR:false positive rate,描述将负例识别为正例的情况占所有负例的比例
计算公式为:FPR= FP / (FP + TN)
TNR:true negative rate,描述识别出的负例占所有负例的比例
计算公式为:TNR= TN / (FP + TN)
PPV:Positive predictive value
计算公式为:PPV=TP / (TP + FP)
NPV:Negative predictive value
计算公式:NPV=TN / (FN + TN)
其中TPR即为敏感度(sensitivity),TNR即为特异度(specificity)。

TPR 与 FPR详细说明

真正例率 TPR = TP / (TP + FN)
表示,预测为正例且真实情况为正例的,占所有真实情况中正例的比率。
假正例率 FPR = FP / (TN + FP)
表示,预测为正例但真实情况为反例的,占所有真实情况中反例的比率。
TPR越大,则表示挑出的越有可能(是正确的);FPR越大,则表示越不可能(在挑选过程中,再挑新的出来,即再挑认为是正确的出来,越有可能挑的是错误的)。
TPR 与 FPR 呈反相关,随着采样的继续越不可能是正例的被采样出来,TPR降低,FPR升高。

查准率/正确率(precision)

查准率(precision),指的是预测值为1且真实值也为1的样本在预测值为1的所有样本中所占的比例。
在这里插入图片描述

召回率(recall)

召回率(recall),也叫查全率,指的是预测值为1且真实值也为1的样本在真实值为1的所有样本中所占的比例。所有的好西瓜中有多少比例被算法挑了出来。
在这里插入图片描述

F1-Score

F1分数(F1 Score),是统计学中用来衡量二分类(或多任务二分类)模型精确度的一种指标。它同时兼顾了分类模型的准确率和召回率。F1分数可以看作是模型准确率和召回率的一种加权平均,它的最大值是1,最小值是0,值越大意味着模型越好。
F1分数(F1-Score),又称为平衡F分数(BalancedScore),它被定义为精确率和召回率的调和平均数。
在这里插入图片描述
在这里插入图片描述

一些指标的代码实现:

def perf_measure(y_true, y_pred):
    TP, FP, TN, FN = 0, 0, 0, 0

    for i in range(len(y_true)):
        if y_true[i] == 1 and y_pred[i] == 1:
            TP += 1
        if y_true[i] == 0 and y_pred[i] == 1:
            FP += 1
        if y_true[i] == 0 and y_pred[i] == 0:
            TN += 1
        if y_true[i] == 1 and y_pred[i] == 0:
            FN += 1

    return TP, FP, TN, FN


# Compute confusion matrix
TP, FP, TN, FN = perf_measure(test_y, output_2)
print(TP, FP, TN, FN)
# Sensitivity, hit rate, recall, or true positive rate
TPR = TP / (TP + FN)
# Specificity or true negative rate
TNR = TN / (TN + FP)
# Precision or positive predictive value
PPV = TP / (TP + FP)
# Negative predictive value
NPV = TN / (TN + FN)
# Fall out or false positive rate
FPR = FP / (FP + TN)
# False negative rate
FNR = FN / (TP + FN)
# False discovery rate
FDR = FP / (TP + FP)

precision = TP / (TP + FP)  # 查准率
recall = TP / (TP + FN)  # 查全率
print(TPR, TNR, PPV, NPV, FPR, FNR, FDR, precision, recall)
目录
相关文章
|
5月前
|
机器学习/深度学习 数据可视化 C语言
多分类混淆矩阵详解
多分类混淆矩阵详解
333 0
|
6月前
广义线性模型glm泊松回归的lasso、弹性网络分类预测学生考试成绩数据和交叉验证
广义线性模型glm泊松回归的lasso、弹性网络分类预测学生考试成绩数据和交叉验证
|
6月前
|
机器学习/深度学习 数据采集 算法
乳腺癌预测:特征交叉+随机森林=成功公式?
乳腺癌预测:特征交叉+随机森林=成功公式?
82 0
乳腺癌预测:特征交叉+随机森林=成功公式?
|
11月前
|
存储 机器学习/深度学习 算法
6个常用的聚类评价指标
评估聚类结果的有效性,即聚类评估或验证,对于聚类应用程序的成功至关重要。
233 0
|
机器学习/深度学习 数据挖掘
knn 线性回归 决策树房价预测实战
knn 线性回归 决策树房价预测实战
86 0
|
机器学习/深度学习 数据采集 算法
基于随机森林实现特征选择降维及回归预测(Matlab代码实现)
基于随机森林实现特征选择降维及回归预测(Matlab代码实现)
383 0
特征选择:回归,二分类,多分类特征选择有这么多差异需要注意
特征选择:回归,二分类,多分类特征选择有这么多差异需要注意
142 0
|
机器学习/深度学习 算法 数据可视化
概率模型评价指标
概率模型评价指标
157 0
|
机器学习/深度学习 算法
连载|GBDT如何进行回归和分类
连载|GBDT如何进行回归和分类
|
机器学习/深度学习 数据可视化 计算机视觉
图像分类_03分类器及损失:线性分类+ SVM损失+Softmax 分类+交叉熵损失
解释:w的每⼀⾏都是其中⼀个类的分类器。这些数字的⼏何解释是,当我们改变w的⼀行时,像素空间中相应的线将以不同的⽅向旋转。⽽其中的偏置是为了让我们避免所有的分类器都过原点。
164 0
下一篇
无影云桌面