牛顿法的关键点

简介: 牛顿法的关键点

牛顿法的关键点



牛顿法利用了函数的一阶和二阶导数信息,直接寻找梯度为0的点。牛顿法的迭代公式为:

image.png


其中H为Hessian矩阵,g为梯度向量。牛顿法不能保证每次迭代时函数值下降,也不能保证收敛到极小值点。在实现时,也需要设置学习率,原因和梯度下降法相同,是为了能够忽略泰勒展开中的高阶项。学习率的设置通常采用直线搜索(line search)技术。


在实现时,一般不直接求Hessian矩阵的逆矩阵,而是求解下面的线性方程组:

image.png





其解d称为牛顿方向。迭代终止的判定依据是梯度值充分接近于0,或者达到最大指定迭代次数。



牛顿法比梯度下降法有更快的收敛速度,但每次迭代时需要计算Hessian矩阵,并求解一个线性方程组,运算量大。另外,如果Hessian矩阵不可逆,则这种方法失效。对牛顿法更全面的介绍可以阅读SIGAI之前的公众号文章“理解牛顿法”。


相关文章
|
6月前
用图直观上理解梯度算子(一阶)与拉普拉斯算子(二阶)的区别,线检测与边缘检测的区别
用图直观上理解梯度算子(一阶)与拉普拉斯算子(二阶)的区别,线检测与边缘检测的区别
216 1
基于鱼群算法的函数寻优
人工鱼群算法是李晓磊等人于2002年提出的一类基于动物行为的群体智能优化算法。该算法是通过模拟鱼类的觅食、聚群、追尾、随机等行为在搜索域中进行寻优,是集群体智能思想的一个具体应用。生物的视觉是极其复杂的,它能快速感知大量的空间事物,这是任何仪器和程序都难以比拟的,为了实施的简便和有效,在鱼群模式中应用了如下方法实现虚拟人工鱼的视觉。
|
机器学习/深度学习 传感器 算法
基于组合多策略改进的自适应哈里斯鹰算法求解单目标优化问题CEHHO附matlab代码
基于组合多策略改进的自适应哈里斯鹰算法求解单目标优化问题CEHHO附matlab代码
|
算法 定位技术 vr&ar
【状态估计】变分贝叶斯近似的递归噪声自适应卡尔曼滤波(Matlab代码实现)
【状态估计】变分贝叶斯近似的递归噪声自适应卡尔曼滤波(Matlab代码实现)
113 0
|
机器学习/深度学习 传感器 算法
【鲸鱼算法】基于融合动态概率阈值和自适应变异的鲸鱼优化算法PTMWOA求解单目标优化问题附matlab代码
【鲸鱼算法】基于融合动态概率阈值和自适应变异的鲸鱼优化算法PTMWOA求解单目标优化问题附matlab代码
|
算法 固态存储
【双目视觉】 立体匹配算法原理之“代价函数”
Census方法任取左图一个像素点P,观察周围3*3窗口的像素点灰度值,如果小于P就置1,否则为0,然后编码。右图也是如此。最后异或比较,根据异或后的结果,看‘1’的个数,计算汉明距离
189 0
|
机器学习/深度学习 定位技术
如何推导高斯过程回归以及深层高斯过程详解
如何推导高斯过程回归以及深层高斯过程详解
543 0
如何推导高斯过程回归以及深层高斯过程详解
|
机器学习/深度学习 算法 Serverless
非梯度类启发式搜索算法:Nelder Mead
Nelder Mead 算法通常是用来求解非线性(nonlinear)、导函数未知情况下目标函数的最大值或者最小值。学过梯度下降的同学应该知道,梯度下降类算法的每一步都需要计算当前位置的梯度,从而更新当前解使得最终逐渐逼近最优解。但在某一些情况下,目标函数的梯度难以求得或是函数值离散的情况下,这时候便无法直接使用梯度类算法来求解了。
454 0
非梯度类启发式搜索算法:Nelder Mead
凸优化理论基础3——凸集和凸锥重要例子
凸优化理论基础3——凸集和凸锥重要例子
939 0
凸优化理论基础3——凸集和凸锥重要例子
|
机器学习/深度学习 传感器 算法
【樽海鞘算法】基于疯狂自适应的樽海鞘算法求解单目标优化问题附matlab代码
【樽海鞘算法】基于疯狂自适应的樽海鞘算法求解单目标优化问题附matlab代码
下一篇
无影云桌面