【图像分割-阈值分割】基于灰狼算法优化最小交叉熵实现图像多阈值分割附Matlab代码

本文涉及的产品
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频资源包5000点
简介: 【图像分割-阈值分割】基于灰狼算法优化最小交叉熵实现图像多阈值分割附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机

1 内容介绍

阈值分割方法的关键在于阈值选取.阈值决定了图像分割结果的好与坏,随着阈值数量的增加,图像分割的计算过程越来越复杂.为了选取适当的阈值进行图像分割,文中提出了离散灰狼算法(Discrete Grey Wolf Optimizer,DGWO),即经过离散化处理的灰狼算法,并用该算法求解以Kapur分割函数为目标函数的全局优化问题.DGWO算法具有很好的全局收敛性与计算鲁棒性,能够避免陷入局部最优,尤其适合高维,多峰的复杂函数问题的求解,并且可以很好地融合到图像分割过程当中.大量的理论分析和仿真实验的结果表明,与遗传算法(GA),粒子群算法(PSO)的图像分割结果相比,在选取多张分割图像,多个分割阈值的情况下,该算法具有更好的分割效果,更高的分割效率,优化得到的阈值范围更加稳定,分割质量更高.

2 部分代码

%___________________________________________________________________%

%  Grey Wolf Optimizer (GWO) source codes version 1.0               %

%                                                                   %

%  Developed in MATLAB R2011b(7.13)                                 %

%                                                                   %

%  Author and programmer: Seyedali Mirjalili                        %

%                                                                   %

%         e-Mail: ali.mirjalili@gmail.com                           %

%                 seyedali.mirjalili@griffithuni.edu.au             %

%                                                                   %

%       Homepage: http://www.alimirjalili.com                       %

%                                                                   %

%   Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis             %

%               Grey Wolf Optimizer, Advances in Engineering        %

%               Software , in press,                                %

%               DOI: 10.1016/j.advengsoft.2013.12.007               %

%                                                                   %

%___________________________________________________________________%

% Grey Wolf Optimizer

function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)

% initialize alpha, beta, and delta_pos

Alpha_pos=zeros(1,dim);

Alpha_score=inf; %change this to -inf for maximization problems

Beta_pos=zeros(1,dim);

Beta_score=inf; %change this to -inf for maximization problems

Delta_pos=zeros(1,dim);

Delta_score=inf; %change this to -inf for maximization problems

%Initialize the positions of search agents

Positions=initialization(SearchAgents_no,dim,ub,lb);

Convergence_curve=zeros(1,Max_iter);

l=0;% Loop counter

% Main loop

while l<Max_iter

   for i=1:size(Positions,1)  

       

      % Return back the search agents that go beyond the boundaries of the search space

       Flag4ub=Positions(i,:)>ub;

       Flag4lb=Positions(i,:)<lb;

       Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;              

       

       % Calculate objective function for each search agent

       fitness=fobj(Positions(i,:));

       

       % Update Alpha, Beta, and Delta

       if fitness<Alpha_score

           Alpha_score=fitness; % Update alpha

           Alpha_pos=Positions(i,:);

       end

       

       if fitness>Alpha_score && fitness<Beta_score

           Beta_score=fitness; % Update beta

           Beta_pos=Positions(i,:);

       end

       

       if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score

           Delta_score=fitness; % Update delta

           Delta_pos=Positions(i,:);

       end

   end

   

   

   a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0

   

   % Update the Position of search agents including omegas

   for i=1:size(Positions,1)

       for j=1:size(Positions,2)    

                     

           r1=rand(); % r1 is a random number in [0,1]

           r2=rand(); % r2 is a random number in [0,1]

           

           A1=2*a*r1-a; % Equation (3.3)

           C1=2*r2; % Equation (3.4)

           

           D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1

           X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1

                     

           r1=rand();

           r2=rand();

           

           A2=2*a*r1-a; % Equation (3.3)

           C2=2*r2; % Equation (3.4)

           

           D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2

           X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2      

           

           r1=rand();

           r2=rand();

           

           A3=2*a*r1-a; % Equation (3.3)

           C3=2*r2; % Equation (3.4)

           

           D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3

           X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3            

           

           Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)

           

       end

   end

   l=l+1;    

   Convergence_curve(l)=Alpha_score;

end

3 运行结果

image.gif编辑

4 参考文献

[1]赵勇, 方宗德, 庞辉,等. 基于量子粒子群优化算法的最小交叉熵多阈值图像分割[J]. 计算机应用研究, 2008, 25(4):3.

[2]李薇, 胡晓辉, 王鸿闯. 基于改进BBO算法的二维交叉熵多阈值图像分割(英文)[J]. Journal of Measurement Science and Instrumentation, 2018, v.9;No.33(01):46-53.

博主简介:擅长智能优化算法神经网络预测信号处理元胞自动机图像处理路径规划无人机雷达通信无线传感器等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
2月前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
257 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
152 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
124 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
8月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
8月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
|
8月前
|
算法 调度
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)

热门文章

最新文章