Real Time Clock (RTC) Drivers for Linux

简介:

/*将这篇英文原文的RTC放于此,方便阅读和后续的翻译,仅学习使用!*/

 Real Time Clock  (RTC) Drivers for Linux 

 ======================================= 

When Linux developers talk about a "Real Time Clock"  they usually mean something that tracks wall clock time and is battery backed so that it works even with system power off.  Such clocks will normally not track the local time zone or daylight savings time -- unless they dual boot with MS-Windows -- but will instead be set to Coordinated Universal Time  (UTC  formerly "Greenwich Mean Time"). 

The newest non-PC hardware tends to just count seconds  like the time (2) system call reports  but RTCs also very commonly represent time using the Gregorian calendar and 24 hour time  as reported by gmtime (3). 

Linux has two largely-compatible userspace RTC API families you may need to know about: 

  * /dev/rtc  ... is the RTC provided by PC compatible systems  so it's not very portable to non-x86 systems. 
  * /dev/rtc0  /dev/rtc1  ... are part of a framework that's  supported by a wide variety of RTC chips on all systems. 

Programmers need to understand that the PC/AT functionality is not always available  and some systems can do much more.  That is  the RTCs use the same API to make requests in both RTC frameworks  (using different filenames of course)  but the hardware may not offer the same functionality.  For example  not every RTC is hooked up to an IRQ  so they can 't all issue alarms; and where standard PC RTCs can only issue an alarm up to 24 hours in the future  other hardware may be able to schedule one any time in the upcoming century. 

 Old PC/AT-Compatible driver:  /dev/rtc 
 -------------------------------------- 

All PCs  (even Alpha machines) have a Real Time Clock built into them . Usually they are built into the chipset of the computer  but some may actually have a Motorola MC146818  (or clone) on the board. This is the clock that keeps the date and time while your computer is turned off. 

ACPI has standardized that MC146818 functionality  and extended it in a few ways  (enabling longer alarm periods  and wake-from-hibernate). That functionality is NOT exposed in the old driver. 

However it can also be used to generate signals from a slow 2Hz to a relatively fast 8192Hz  in increments of powers of two. These signals are reported by interrupt number 8.  (Oh ! So *that* is what IRQ 8 is for...) It can also function as a 24hr alarm  raising IRQ 8 when the alarm goes off. The alarm can also be programmed to only check any subset of the three programmable values  meaning that it could be set to ring on the 30th second of the 30th minute of every hour  for example. The clock can also be set to generate an interrupt upon every clock update  thus generating a 1Hz signal. 

The interrupts are reported via /dev/rtc  (major 10  minor 135  read only character device) in the form of an unsigned long. The low byte contains the type of interrupt  (update-done  alarm-rang  or periodic) that was raised  and the remaining bytes contain the number of interrupts since the last read.  Status information is reported through the pseudo-file /proc/driver/rtc if the /proc filesystem was enabled.  The driver has 
built in locking so that only one process is allowed to have the /dev/rtc interface open at a time. 

A user process can monitor these interrupts by doing a read (2) or a select (2) on /dev/rtc -- either will block/stop the user process until the next interrupt is received. This is useful for things like reasonably high frequency data acquisition where one doesn 't want to burn up 100% CPU by polling gettimeofday etc. etc. 

At high frequencies  or under high loads  the user process should check the number of interrupts received since the last read to determine if there has been any interrupt "pileup" so to speak. Just for reference  a typical 486-33 running a tight read loop on /dev/rtc will start to suffer occasional interrupt pileup  (i.e. > 1 IRQ event since last read) for frequencies above 1024Hz. So you really should check the high bytes of the value you read  especially at frequencies above that of the normal timer interrupt  which is 100Hz. 

Programming and/or enabling interrupt frequencies greater than 64Hz is only allowed by root. This is perhaps a bit conservative  but we don 't want 
an evil user generating lots of IRQs on a slow 386sx-16  where it might have a negative impact on performance. This 64Hz limit can be changed by writing a different value to /proc/sys/dev/rtc/max-user-freq. Note that the interrupt handler is only a few lines of code to minimize any possibility of this effect. 

Also  if the kernel time is synchronized with an external source  the  kernel will write the time back to the CMOS clock every 11 minutes. In  the process of doing this  the kernel briefly turns off RTC periodic  interrupts  so be aware of this if you are doing serious work. If you don 't synchronize the kernel time with an external source  (via ntp or whatever) then the kernel will keep its hands off the RTC  allowing you exclusive access to the device for your applications. 

The alarm and/or interrupt frequency are programmed into the RTC via various ioctl (2) calls as listed in  ./include/linux/rtc.h 

Rather than write 50 pages describing the ioctl () and so on  it is perhaps more useful to include a small test program that demonstrates how to use them  and demonstrates the features of the driver. This is probably a lot more useful to people interested in writing applications that will be using this driver.  See the code at the end of this document. 
(The original /dev/rtc driver was written by Paul Gortmaker.) 

 New portable "RTC Class" drivers:  /dev/rtcN 
 -------------------------------------------- 
Because Linux supports many non-ACPI and non-PC platforms  some of which have more than one RTC style clock  it needed a more portable solution 
than expecting a single battery-backed MC146818 clone on every system . Accordingly  a new "RTC Class" framework has been defined.  It offers three different userspace interfaces: 
   * /dev/rtcN  ... much the same as the older /dev/rtc interface 
   * /sys/class/rtc/rtcN  ... sysfs attributes support readonly access to some RTC attributes. 
   * /proc/driver/rtc  ... the first RTC  (rtc0) may expose itself using a procfs interface.  More information is  (currently) shown here than through sysfs. 

The RTC Class framework supports a wide variety of RTCs  ranging from those integrated into embeddable system-on-chip  (SOC) processors to discrete chips using I2C  SPI  or some other bus to communicate with the host CPU .  There's even support for PC-style RTCs  ... including the features exposed on newer PCs through ACPI. 

The new framework also removes the "one RTC per system" restriction.  For example  maybe the low-power battery-backed RTC is a discrete I2C chip  but a high functionality RTC is integrated into the SOC.  That system might read the system clock from the discrete RTC  but use the integrated one for all other tasks  because of its greater functionality. 

SYSFS INTERFACE 
--------------- 
The sysfs interface under /sys/class/rtc/rtcN provides access to various rtc attributes without requiring the use of ioctls. All dates and times are in the RTC's timezone  rather than in system time. 

date:        RTC-provided date 
hctosys:     1 if the RTC provided the system time at boot via the 
CONFIG_RTC_HCTOSYS kernel option  0 otherwise 

max_user_freq:  The maximum interrupt rate an unprivileged user may request from this RTC. 
name:   The name of the RTC corresponding to this sysfs directory 
sice_epoch :  The number of seconds since the epoch according to the RTC 
time:   RTC-provided time 
wakealarm :  The time at which the clock will generate a system wakeup  event. This is a one shot wakeup event  so must be reset after wake if a daily wakeup is required. Format is either seconds since the epoch or  if there's a leading +  seconds in the future. 

IOCTL INTERFACE 
--------------- 

The ioctl () calls supported by /dev/rtc are also supported by the RTC class framework.  However  because the chips and systems are not standardized 
some PC/AT functionality might not be provided.  And in the same way  some newer features -- including those enabled by ACPI -- are exposed by the 
RTC class framework  but can 't be supported by the older driver. 
    * RTC_RD_TIME  RTC_SET_TIME  ... every RTC supports at least reading time  returning the result as a Gregorian calendar date and 24 hour 
 wall clock time.  To be most useful  this time may also be updated. 


    * RTC_AIE_ON  RTC_AIE_OFF  RTC_ALM_SET  RTC_ALM_READ  ... when the RTC  is connected to an IRQ line  it can often issue an alarm IRQ up to 24 hours in the future.   (Use RTC_WKALM_* by preference.) 


    * RTC_WKALM_SET  RTC_WKALM_RD  ... RTCs that can issue alarms beyond  the next 24 hours use a slightly more powerful API  which supports setting the longer alarm time and enabling its IRQ using a single request  (using the same model as EFI firmware). 

    * RTC_UIE_ON  RTC_UIE_OFF  ... if the RTC offers IRQs  the RTC framework will emulate this mechanism . 


    * RTC_PIE_ON  RTC_PIE_OFF  RTC_IRQP_SET  RTC_IRQP_READ  ... these icotls  are emulated via a kernel hrtimer. 

In many cases  the RTC alarm can be a system wake event  used to force Linux out of a low power sleep state  (or hibernation) back to a fully operational state.  For example  a system could enter a deep power saving state until it's time to execute some scheduled tasks. 

Note that many of these ioctls are handled by the common rtc-dev interface. Some common examples: 
    * RTC_RD_TIME  RTC_SET_TIME : the read_time/set_time functions will be 
called with appropriate values. 

    * RTC_ALM_SET  RTC_ALM_READ  RTC_WKALM_SET  RTC_WKALM_RD: gets or sets the alarm rtc_timer. May call the set_alarm driver function. 
    * RTC_IRQP_SET  RTC_IRQP_READ: These are emulated by the generic code. 

    * RTC_PIE_ON  RTC_PIE_OFF: These are also emulated by the generic code. 
If all else fails  check out the rtc-test.c driver! 

-------------------- 8< ---------------- 8< ----------------------------- 
/* 
 *      Real Time Clock Driver Test/Example Program 
 * 
 *      Compile with : 
 *       gcc -s -Wall -Wstrict-prototypes rtctest.c -o rtctest 
 * 
 *      Copyright  (C) 1996  Paul Gortmaker. 
 * 
 *      Released under the GNU General Public License  version 2 
 *      included herein by reference. 
 * 
 */ 
#include <stdio.h> 
#include <linux/rtc.h> 
#include <sys/ioctl.h> 
#include <sys/time.h> 
#include <sys/types.h> 
#include <fcntl.h> 
#include <unistd.h> 
#include <stdlib .h> 
#include <errno.h> 
/* 
 * This expects the new RTC class driver framework  working with 
 * clocks that will often not be clones of what the PC-AT had. 
 * Use the command line to specify another RTC if you need one. 
 */ 
static const char default_rtc [] = "/dev/rtc0"; 

int main (int argc  char **argv) 
{ 
 int i  fd  retval  irqcount = 0; 
unsigned long tmp  data; 
 struct rtc_time rtc_tm; 
 const char *rtc = default_rtc; 

 switch  (argc)  { 
 case 2: 
  rtc = argv [1]; 
  /* FALLTHROUGH */ 
 case 1: 
  break; 
 default: 
  fprintf (stderr  "usage:  rtctest  [rtcdev]\n"); 
  return 1; 
  } 

 fd = open (rtc  O_RDONLY); 

 if  (fd ==  -1)  { 
  perror (rtc); 
  exit (errno); 
  } 

 fprintf (stderr  "\n\t\t\tRTC Driver Test Example.\n\n"); 
 /* Turn on update interrupts  (one per second) */ 
 retval = ioctl (fd  RTC_UIE_ON  0); 
 if  (retval == -1)  { 
  if  (errno == ENOTTY)  { 
   fprintf (stderr 
    "\n...Update IRQs not supported.\n"); 
   goto test_READ; 
   } 
  perror ("RTC_UIE_ON ioctl"); 
  exit (errno); 
  } 

 fprintf (stderr  "Counting 5 update  (1/sec) interrupts from reading %s:" 
   rtc); 
 fflush (stderr); 
 for  (i=1; i<6; i++)  { 
  /* This read will block */ 
  retval = read (fd  &data  sizeof (unsigned long)); 
  if  (retval == -1)  { 
   perror ("read"); 
   exit (errno); 
   } 
  fprintf (stderr  " %d" i); 
  fflush (stderr); 
  irqcount++; 
 } 

 fprintf (stderr  "\nAgain  from using select (2) on /dev/rtc:"); 
 fflush (stderr); 
 for  (i=1; i<6; i++)  { 
  struct timeval tv =  {5  0};     /* 5 second timeout on select */ 
  fd_set readfds; 

  FD_ZERO (&readfds); 
  FD_SET (fd  &readfds); 
  /* The select will wait until an RTC interrupt happens. */ 
  retval = select (fd+1  &readfds  NULL  NULL  &tv); 
  if  (retval == -1)  { 
          perror ("select"); 
          exit (errno); 
   } 
  /* This read won 't block unlike the select-less case above. */ 
  retval = read (fd  &data  sizeof (unsigned long)); 
  if  (retval == -1)  { 
          perror ("read"); 
          exit (errno); 
   } 
  fprintf (stderr  " %d" i); 
  fflush (stderr); 
  irqcount++; 
  } 

 /* Turn off update interrupts */ 
 retval = ioctl (fd  RTC_UIE_OFF  0); 
 if  (retval == -1)  { 
  perror ("RTC_UIE_OFF ioctl"); 
  exit (errno); 
  } 

test_READ: 
 /* Read the RTC time/date */ 
 retval = ioctl (fd  RTC_RD_TIME  &rtc_tm); 
 if  (retval == -1)  { 
  perror ("RTC_RD_TIME ioctl"); 
  exit (errno); 
  } 

 fprintf (stderr  "\n\nCurrent RTC date/time is %d-%d-%d  %02d:%02d:%02d.\n" 
  rtc_tm .tm_mday  rtc_tm .tm_mon + 1  rtc_tm .tm_year + 1900 
  rtc_tm .tm_hour  rtc_tm .tm_min  rtc_tm .tm_sec); 

 /* Set the alarm to 5 sec in the future  and check for rollover */ 
 rtc_tm .tm_sec += 5; 
 if  (rtc_tm .tm_sec >= 60)  { 
rtc_tm .tm_sec %= 60; 
  rtc_tm .tm_min++; 
  } 
 if  (rtc_tm .tm_min == 60)  { 
  rtc_tm .tm_min = 0; 
  rtc_tm .tm_hour++; 
  } 
 if  (rtc_tm .tm_hour == 24) 
  rtc_tm .tm_hour = 0; 

 retval = ioctl (fd  RTC_ALM_SET  &rtc_tm); 
 if  (retval == -1)  { 
  if  (errno == ENOTTY)  { 
   fprintf (stderr 
    "\n...Alarm IRQs not supported.\n"); 
   goto test_PIE; 
   } 
  perror ("RTC_ALM_SET ioctl"); 
  exit (errno); 
  } 

 /* Read the current alarm settings */ 
 retval = ioctl (fd  RTC_ALM_READ  &rtc_tm); 
 if  (retval == -1)  { 
  perror ("RTC_ALM_READ ioctl"); 
  exit (errno); 
  } 

 fprintf (stderr  "Alarm time now set to %02d:%02d:%02d.\n" 
  rtc_tm .tm_hour  rtc_tm .tm_min  rtc_tm .tm_sec); 


 /* Enable alarm interrupts */ 
 retval = ioctl (fd  RTC_AIE_ON  0); 
 if  (retval == -1)  { 
  perror ("RTC_AIE_ON ioctl"); 
  exit (errno); 
  } 

 fprintf (stderr  "Waiting 5 seconds for alarm ..."); 
 fflush (stderr); 
 /* This blocks until the alarm ring causes an interrupt */ 
 retval = read (fd  &data  sizeof (unsigned long)); 
 if  (retval == -1)  { 
  perror ("read"); 
  exit (errno); 
  } 
 irqcount++; 
 fprintf (stderr  " okay. Alarm rang.\n"); 
/* Disable alarm interrupts */ 
 retval = ioctl (fd  RTC_AIE_OFF  0); 
 if  (retval == -1)  { 
  perror ("RTC_AIE_OFF ioctl"); 
  exit (errno); 
  } 

test_PIE : 
 /* Read periodic IRQ rate */ 
 retval = ioctl (fd  RTC_IRQP_READ  &tmp); 
 if  (retval == -1)  { 
  /* not all RTCs support periodic IRQs */ 
  if  (errno == ENOTTY)  { 
   fprintf (stderr  "\nNo periodic IRQ support\n"); 
   goto done; 
   } 
  perror ("RTC_IRQP_READ ioctl"); 
  exit (errno); 
  } 
 fprintf (stderr  "\nPeriodic IRQ rate is %ldHz.\n"  tmp); 

 fprintf (stderr  "Counting 20 interrupts at:"); 
 fflush (stderr); 

 /* The frequencies 128Hz  256Hz   ... 8192Hz are only allowed for root. */ 
 for  (tmp=2; tmp<=64; tmp*=2)  { 


  retval = ioctl (fd  RTC_IRQP_SET  tmp); 
  if  (retval == -1)  { 
   /* not all RTCs can change their periodic IRQ rate */ 
   if  (errno == ENOTTY)  { 
    fprintf (stderr 
     "\n...Periodic IRQ rate is fixed\n"); 
    goto done; 
    } 
   perror ("RTC_IRQP_SET ioctl"); 
   exit (errno); 
   } 

  fprintf (stderr  "\n%ldHz:\t"  tmp); 
  fflush (stderr); 

  /* Enable periodic interrupts */ 
  retval = ioctl (fd  RTC_PIE_ON  0); 
  if  (retval == -1)  { 
   perror ("RTC_PIE_ON ioctl"); 
   exit (errno); 
   } 
for  (i=1; i<21; i++)  { 
   /* This blocks */ 
   retval = read (fd  &data  sizeof (unsigned long)); 
   if  (retval == -1)  { 
    perror ("read"); 
    exit (errno); 
    } 
   fprintf (stderr  " %d" i); 
   fflush (stderr); 
   irqcount++; 
   } 

  /* Disable periodic interrupts */ 
  retval = ioctl (fd  RTC_PIE_OFF  0); 
  if  (retval == -1)  { 
   perror ("RTC_PIE_OFF ioctl"); 
   exit (errno); 
   } 
  } 

done: 
 fprintf (stderr  "\n\n\t\t\t *** Test complete ***\n"); 

 close (fd); 
 return 0; 
} 


目录
相关文章
|
6月前
|
Linux Shell 网络安全
LabVIEW NI Linux Real-Time深层解析
LabVIEW NI Linux Real-Time深层解析
112 0
|
4月前
|
Linux Shell
Linux中的realpath命令:深入解析与实用指南
**Linux的`realpath`命令详解** `realpath`用于获取文件或目录的规范化绝对路径,解析相对路径、符号链接及冗余元素。它接受路径输入,返回最短、唯一的绝对路径。支持 `-e`(确保路径存在)、`-m`(允许缺失组件)、`-s`(删除多余斜杠)和`-q`(静默模式)等参数。在脚本中使用能确保路径一致性,但需注意权限和路径检查。了解`pwd`、`find`和`readlink`等命令的用法也有助于选择合适的路径处理工具。
|
数据可视化 Linux 调度
译 | Linux perf_events Off-CPU Time Flame Graph
译 | Linux perf_events Off-CPU Time Flame Graph
107 0
|
NoSQL Linux Go
Run 32-bit applications on 64-bit Linux kernel
Run 32-bit applications on 64-bit Linux kernel
549 0
Run 32-bit applications on 64-bit Linux kernel
|
Linux 数据安全/隐私保护