故障检测指标的贡献分析(Reconstruction Based Contribution,RBC)新方法

简介: 故障检测指标的贡献分析(Reconstruction Based Contribution,RBC)新方法

最近研究的故障检测新的方法,发现一个基于故障重构的贡献方法,准确的说是一种基于沿变量方向重建故障检测指标的贡献分析新方法。


在检测到导致故障检测指标超出控制极限的故障情况后,沿每个变量方向使故障检测指标最小化的重构量被定义为该变量的基于重构的贡献(RBC)。


Reconstruction Based Contribution(RBC)

RBC方法在几个方面优于传统的贡献图。


结果表明,即使在传感器故障的情况下(将其作为简单故障进行了讨论),传统的贡献图也不能保证故障传感器具有最大的贡献,无论故障大小如何。


进一步表明,RBC保证了正确的诊断,因为故障变量的贡献最大。这些结论通常适用于SPE指数、霍特林指数和组合指数。


image.png

image.png

这很方便,因为传统的贡献没有很好的定义。

image.png

image.png

image.png

基于贡献图和RBC的故障诊断能力

传统的贡献图和RBC方法的目的不是在故障发生时唯一地识别故障。它们用于选择因故障情况而具有最大贡献的变量子集,然后检查那些具有较大贡献的变量以进行故障诊断。然而,据报道,贡献图具有从一个变量到另一个变量的断层涂抹效应。因此,了解故障点的重要性何时足以导致误诊是很有意思的。


为了分析误诊的可能性,考虑了变量J JJ中的一个简单故障的情况。该故障对SPE指数的第i 个贡献为

image.png

image.png

image.png

因此,变量j中故障的影响被涂抹到变量i的RBC中。

image.png

这一结果表明,即使对于简单的故障,传统的贡献图也无法避免误诊。论文Alcala和Qin(2009)对聚酯薄膜工艺进行了工业案例研究,结果表明,对于除综合指数外的所有指数,RBC法给出的正确诊断率均大于传统贡献法给出的正确诊断率。此外,当从每个故障案例中提取并使用过程故障方向时,RBC方法给出的正确诊断率更高。


当组合指数与RBC方法结合使用时,可获得最大的正确诊断率。


相关文章
|
6月前
|
机器学习/深度学习 搜索推荐 算法
推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。
推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。
426 0
|
18天前
|
机器学习/深度学习 数据采集 算法
基于Liquid State Machine的时间序列预测:利用储备池计算实现高效建模
**Liquid State Machine (LSM)** 是一种 **脉冲神经网络 (Spiking Neural Network, SNN)** ,在计算神经科学和机器学习领域中得到广泛应用,特别适用于处理 **时变或动态数据**。它是受大脑自然信息处理过程启发而提出的一种 **脉冲神经网络** 。
48 4
基于Liquid State Machine的时间序列预测:利用储备池计算实现高效建模
|
3月前
|
机器学习/深度学习 运维 算法
【KDD2024】面向集群整体作业运行变慢的异常检测
阿里云计算平台大数据基础工程技术团队主导,与浙江大学合作的论文《Cluster-Wide Task Slowdown Detection in Cloud System》被数据挖掘领域顶会ACM SIGKDD2024接收。论文从新的视角分析云计算平台集群健康状态,实现了基于神经网络的集群作业整体变慢异常定向检测,与SOTA异常检测算法相比平均提升F1 score 5.3%。
|
6月前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】维度灾难问题会如何影响K-means算法?
【5月更文挑战第15天】【机器学习】维度灾难问题会如何影响K-means算法?
|
机器学习/深度学习 数据可视化 TensorFlow
【2023年最新】提高分类模型指标的六大方案详解
【2023年最新】提高分类模型指标的六大方案详解
270 0
|
Java Linux
理论:第十四章:生产环境服务器变慢如何诊断,性能评估
理论:第十四章:生产环境服务器变慢如何诊断,性能评估
277 0
理论:第十四章:生产环境服务器变慢如何诊断,性能评估
|
Web App开发 运维 监控
量化日常工作指标
量化日常工作指标
|
人工智能 算法 数据挖掘
算法的评估指标
分类:精度(accuracy)、召回率、精确率、F值、ROC-AUC 、混淆矩阵、PRC 回归:RMSE(平方根误差)、MSE(平均平方误差)、MAE(平均绝对误差)、SSE(和方差, 误差平方和)、R-square(确定系数) 聚类:兰德指数、互信息、轮廓系数
203 0
算法的评估指标