Linux驱动开发: 使用usbmon抓取usb 总线上通信的数据

简介: Linux驱动开发: 使用usbmon抓取usb 总线上通信的数据

一、环境介绍

操作系统: ubuntu18.04 64位


二、usbmon使用方法

2.1 功能介绍

usbmon 即 usb monitor,是 linux 内置的 usb 抓包工具。


当前使用的是ubuntu18.04,驱动模块的位置:/lib/modules/5.3.0-40-generic/kernel/drivers/usb/mon/usbmon.ko


如果不确定当前内核的版本,可以先输入uname -r命令查看。

root@wbyq:/mnt/hgfs/linux-share-dir/linux_c/usb_dev_ubuntu# uname -r
5.3.0-40-generic

2.2  挂载 debugfs 文件系统

root@wbyq:/mnt/hgfs/linux-share-dir/linux_c/usb_dev_ubuntu# mount -t debugfs none_debugs /sys/kernel/debug
mount: /sys/kernel/debug: none_debugs already mounted or mount point busy.
root@wbyq:/mnt/hgfs/linux-share-dir/linux_c/usb_dev_ubuntu#

如果提示忙,表示当前系统已经默认挂载。

 

2.3 查看系统是否安装usbmon 模块

root@wbyq:/mnt/hgfs/linux-share-dir/linux_c/usb_dev_ubuntu# ls /sys/module/usbmon
coresize  holders  initsize  initstate  notes  refcnt  sections  srcversion  taint  uevent

如果没有安装usbmon模块,需要执行  modprobe usbmon 命令手动安装。

2.4  查看usbmon可以识别到的USB总线编号

1.root@wbyq:/mnt/hgfs/linux-share-dir/linux_c/usb_dev_ubuntu# ls /sys/kernel/debug/usb/usbmon/
0s  0u  1s  1t  1u  2s  2t  2u  3s  3t  3u  4s  4t  4u

2.5 找到当前要监控的设备使用的总线编号


输入lsusb命令,根据设备ID和厂商ID进行区分。

root@wbyq:/mnt/hgfs/linux-share-dir/linux_c/usb_dev_ubuntu# lsusb
Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
Bus 003 Device 004: ID 0e0f:0002 VMware, Inc. Virtual USB Hub
Bus 003 Device 003: ID 0e0f:0002 VMware, Inc. Virtual USB Hub
Bus 003 Device 000: ID 148f:5370 Ralink Technology, Corp. RT5370 Wireless Adapter
Bus 003 Device 002: ID 0e0f:0003 VMware, Inc. Virtual Mouse
Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
Bus 002 Device 002: ID 0e0f:0002 VMware, Inc. Virtual USB Hub
Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
root@wbyq:/mnt/hgfs/linux-share-dir/linux_c/usb_dev_ubuntu# 

 其中 Bus 003 表示 3号总线。  ID 148f:5370 表示设备ID和厂商ID。  我使用的设备就是148f:5370。 使用的总线是3号总线。


2.6 监控指定总线上通信的数据

为了只看这个想要的设备数据,可以过滤一下。  后面的 "1:010"  ,1表示总线编号。 010表示设备编号。  通过lsusb命令可以看到。

cat /sys/kernel/debug/usb/usbmon/1u | grep "1:010"

image.png

 输入:  cat /sys/kernel/debug/usb/usbmon/3u  读取总线上全部数据。

root@wbyq:/mnt/hgfs/linux-share-dir/linux_c/usb_dev_ubuntu# 
cat /sys/kernel/debug/usb/usbmon/3u 
ffff9bbbaf235b00 1482700625 C Ii:3:001:1 0:2048 1 = 04
ffff9bbbaf235b00 1482700644 S Ii:3:001:1 -115:2048 4 <
ffff9bbbaf235b00 1482842143 C Ii:3:001:1 0:2048 1 = 04
ffff9bbbaf235b00 1482842186 S Ii:3:001:1 -115:2048 4 <
ffff9bba982218c0 1482949850 C Ci:3:000:0 -2 0
ffff9bba982218c0 1482949890 S Co:3:001:0 s 23 03 0004 0002 0000 0
ffff9bba982218c0 1482949923 C Co:3:001:0 0 0
ffff9bba98220840 1483018683 S Ci:3:001:0 s a3 00 0000 0002 0004 4 <
ffff9bba98220840 1483018710 C Ci:3:001:0 0 4 = 02011100
ffff9bba98221740 1483086407 S Ci:3:001:0 s a3 00 0000 0002 0004 4 <
ffff9bba98221740 1483086432 C Ci:3:001:0 0 4 = 02011100
ffff9bbbaf235b00 1483090395 C Ii:3:001:1 0:2048 1 = 04
ffff9bbbaf235b00 1483090399 S Ii:3:001:1 -115:2048 4 <
ffff9bba98220d80 1483294267 S Ci:3:001:0 s a3 00 0000 0002 0004 4 <
ffff9bba98220d80 1483294300 C Ci:3:001:0 0 4 = 02011100
ffff9bbbaf235b00 1483338119 C Ii:3:001:1 0:2048 1 = 04
ffff9bbbaf235b00 1483338131 S Ii:3:001:1 -115:2048 4 <
ffff9bba982203c0 1483502668 S Ci:3:001:0 s a3 00 0000 0002 0004 4 <
ffff9bba982203c0 1483502719 C Ci:3:001:0 0 4 = 02011100
ffff9bbbaf235b00 1483586724 C Ii:3:001:1 0:2048 1 = 04
ffff9bbbaf235b00 1483586745 S Ii:3:001:1 -115:2048 4 <
ffff9bba98220000 1483709708 S Ci:3:001:0 s a3 00 0000 0002 0004 4 <
ffff9bba98220000 1483709730 C Ci:3:001:0 0 4 = 02011100
ffff9bba98220000 1483709733 S Co:3:001:0 s 23 01 0014 0002 0000 0
ffff9bba98220000 1483709750 C Co:3:001:0 0 0
ffff9bba98220000 1483709752 S Co:3:001:0 s 23 01 0001 0002 0000 0
ffff9bba98220000 1483709765 C Co:3:001:0 0 0
ffff9bba98220000 1483709770 S Co:3:001:0 s 23 01 0001 0002 0000 0
ffff9bba98220000 1483709782 C Co:3:001:0 0 0
ffff9bba98221500 1483710068 S Ci:3:001:0 s a3 00 0000 0002 0004 4 <
ffff9bba98221500 1483710079 C Ci:3:001:0 0 4 = 00010100
ffff9bba98221500 1483710083 S Co:3:001:0 s 23 01 0010 0002 0000 0
ffff9bba98221500 1483710097 C Co:3:001:0 0 0
ffff9bba98221500 1483711226 S Ci:3:001:0 s a3 00 0000 0002 0004 4 <
ffff9bba98221500 1483711257 C Ci:3:001:0 0 4 = 00010000
ffff9bba98221500 1483750452 S Ci:3:001:0 s a3 00 0000 0002 0004 4 <
ffff9bba98221500 1483750506 C Ci:3:001:0 0 4 = 00010000
ffff9bba98221500 1483786383 S Ci:3:001:0 s a3 00 0000 0002 0004 4 <
ffff9bba98221500 1483786431 C Ci:3:001:0 0 4 = 00010000
ffff9bba98220540 1483822302 S Ci:3:001:0 s a3 00 0000 0002 0004 4 <
ffff9bba98220540 1483822337 C Ci:3:001:0 0 4 = 00010000
ffff9bba982203c0 1483858192 S Ci:3:001:0 s a3 00 0000 0002 0004 4 <
ffff9bba982203c0 1483858245 C Ci:3:001:0 0 4 = 00010000

三、字段解释

3.1  官方文档解释  

官方文档:   https://www.kernel.org/doc/Documentation/usb/usbmon.txt

======
usbmon
======
Introduction
============
The name "usbmon" in lowercase refers to a facility in kernel which is
used to collect traces of I/O on the USB bus. This function is analogous
to a packet socket used by network monitoring tools such as tcpdump(1)
or Ethereal. Similarly, it is expected that a tool such as usbdump or
USBMon (with uppercase letters) is used to examine raw traces produced
by usbmon.
The usbmon reports requests made by peripheral-specific drivers to Host
Controller Drivers (HCD). So, if HCD is buggy, the traces reported by
usbmon may not correspond to bus transactions precisely. This is the same
situation as with tcpdump.
Two APIs are currently implemented: "text" and "binary". The binary API
is available through a character device in /dev namespace and is an ABI.
The text API is deprecated since 2.6.35, but available for convenience.
How to use usbmon to collect raw text traces
============================================
Unlike the packet socket, usbmon has an interface which provides traces
in a text format. This is used for two purposes. First, it serves as a
common trace exchange format for tools while more sophisticated formats
are finalized. Second, humans can read it in case tools are not available.
To collect a raw text trace, execute following steps.
1. Prepare
----------
Mount debugfs (it has to be enabled in your kernel configuration), and
load the usbmon module (if built as module). The second step is skipped
if usbmon is built into the kernel::
  # mount -t debugfs none_debugs /sys/kernel/debug
  # modprobe usbmon
  #
Verify that bus sockets are present:
  # ls /sys/kernel/debug/usb/usbmon
  0s  0u  1s  1t  1u  2s  2t  2u  3s  3t  3u  4s  4t  4u
  #
Now you can choose to either use the socket '0u' (to capture packets on all
buses), and skip to step #3, or find the bus used by your device with step #2.
This allows to filter away annoying devices that talk continuously.
2. Find which bus connects to the desired device
------------------------------------------------
Run "cat /sys/kernel/debug/usb/devices", and find the T-line which corresponds
to the device. Usually you do it by looking for the vendor string. If you have
many similar devices, unplug one and compare the two
/sys/kernel/debug/usb/devices outputs. The T-line will have a bus number.
Example::
  T:  Bus=03 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#=  2 Spd=12  MxCh= 0
  D:  Ver= 1.10 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs=  1
  P:  Vendor=0557 ProdID=2004 Rev= 1.00
  S:  Manufacturer=ATEN
  S:  Product=UC100KM V2.00
"Bus=03" means it's bus 3. Alternatively, you can look at the output from
"lsusb" and get the bus number from the appropriate line. Example:
Bus 003 Device 002: ID 0557:2004 ATEN UC100KM V2.00
3. Start 'cat'
--------------
::
  # cat /sys/kernel/debug/usb/usbmon/3u > /tmp/1.mon.out
to listen on a single bus, otherwise, to listen on all buses, type::
  # cat /sys/kernel/debug/usb/usbmon/0u > /tmp/1.mon.out
This process will read until it is killed. Naturally, the output can be
redirected to a desirable location. This is preferred, because it is going
to be quite long.
4. Perform the desired operation on the USB bus
-----------------------------------------------
This is where you do something that creates the traffic: plug in a flash key,
copy files, control a webcam, etc.
5. Kill cat
-----------
Usually it's done with a keyboard interrupt (Control-C).
At this point the output file (/tmp/1.mon.out in this example) can be saved,
sent by e-mail, or inspected with a text editor. In the last case make sure
that the file size is not excessive for your favourite editor.
Raw text data format
====================
Two formats are supported currently: the original, or '1t' format, and
the '1u' format. The '1t' format is deprecated in kernel 2.6.21. The '1u'
format adds a few fields, such as ISO frame descriptors, interval, etc.
It produces slightly longer lines, but otherwise is a perfect superset
of '1t' format.
If it is desired to recognize one from the other in a program, look at the
"address" word (see below), where '1u' format adds a bus number. If 2 colons
are present, it's the '1t' format, otherwise '1u'.
Any text format data consists of a stream of events, such as URB submission,
URB callback, submission error. Every event is a text line, which consists
of whitespace separated words. The number or position of words may depend
on the event type, but there is a set of words, common for all types.
Here is the list of words, from left to right:
- URB Tag. This is used to identify URBs, and is normally an in-kernel address
  of the URB structure in hexadecimal, but can be a sequence number or any
  other unique string, within reason.
- Timestamp in microseconds, a decimal number. The timestamp's resolution
  depends on available clock, and so it can be much worse than a microsecond
  (if the implementation uses jiffies, for example).
- Event Type. This type refers to the format of the event, not URB type.
  Available types are: S - submission, C - callback, E - submission error.
- "Address" word (formerly a "pipe"). It consists of four fields, separated by
  colons: URB type and direction, Bus number, Device address, Endpoint number.
  Type and direction are encoded with two bytes in the following manner:
    == ==   =============================
    Ci Co   Control input and output
    Zi Zo   Isochronous input and output
    Ii Io   Interrupt input and output
    Bi Bo   Bulk input and output
    == ==   =============================
  Bus number, Device address, and Endpoint are decimal numbers, but they may
  have leading zeros, for the sake of human readers.
- URB Status word. This is either a letter, or several numbers separated
  by colons: URB status, interval, start frame, and error count. Unlike the
  "address" word, all fields save the status are optional. Interval is printed
  only for interrupt and isochronous URBs. Start frame is printed only for
  isochronous URBs. Error count is printed only for isochronous callback
  events.
  The status field is a decimal number, sometimes negative, which represents
  a "status" field of the URB. This field makes no sense for submissions, but
  is present anyway to help scripts with parsing. When an error occurs, the
  field contains the error code.
  In case of a submission of a Control packet, this field contains a Setup Tag
  instead of an group of numbers. It is easy to tell whether the Setup Tag is
  present because it is never a number. Thus if scripts find a set of numbers
  in this word, they proceed to read Data Length (except for isochronous URBs).
  If they find something else, like a letter, they read the setup packet before
  reading the Data Length or isochronous descriptors.
- Setup packet, if present, consists of 5 words: one of each for bmRequestType,
  bRequest, wValue, wIndex, wLength, as specified by the USB Specification 2.0.
  These words are safe to decode if Setup Tag was 's'. Otherwise, the setup
  packet was present, but not captured, and the fields contain filler.
- Number of isochronous frame descriptors and descriptors themselves.
  If an Isochronous transfer event has a set of descriptors, a total number
  of them in an URB is printed first, then a word per descriptor, up to a
  total of 5. The word consists of 3 colon-separated decimal numbers for
  status, offset, and length respectively. For submissions, initial length
  is reported. For callbacks, actual length is reported.
- Data Length. For submissions, this is the requested length. For callbacks,
  this is the actual length.
- Data tag. The usbmon may not always capture data, even if length is nonzero.
  The data words are present only if this tag is '='.
- Data words follow, in big endian hexadecimal format. Notice that they are
  not machine words, but really just a byte stream split into words to make
  it easier to read. Thus, the last word may contain from one to four bytes.
  The length of collected data is limited and can be less than the data length
  reported in the Data Length word. In the case of an Isochronous input (Zi)
  completion where the received data is sparse in the buffer, the length of
  the collected data can be greater than the Data Length value (because Data
  Length counts only the bytes that were received whereas the Data words
  contain the entire transfer buffer).
Examples:
An input control transfer to get a port status::
  d5ea89a0 3575914555 S Ci:1:001:0 s a3 00 0000 0003 0004 4 <
  d5ea89a0 3575914560 C Ci:1:001:0 0 4 = 01050000
An output bulk transfer to send a SCSI command 0x28 (READ_10) in a 31-byte
Bulk wrapper to a storage device at address 5::
  dd65f0e8 4128379752 S Bo:1:005:2 -115 31 = 55534243 ad000000 00800000 80010a28 20000000 20000040 00000000 000000
  dd65f0e8 4128379808 C Bo:1:005:2 0 31 >
Raw binary format and API
=========================
The overall architecture of the API is about the same as the one above,
only the events are delivered in binary format. Each event is sent in
the following structure (its name is made up, so that we can refer to it)::
  struct usbmon_packet {
  u64 id;     /*  0: URB ID - from submission to callback */
  unsigned char type; /*  8: Same as text; extensible. */
  unsigned char xfer_type; /*    ISO (0), Intr, Control, Bulk (3) */
  unsigned char epnum;  /*     Endpoint number and transfer direction */
  unsigned char devnum; /*     Device address */
  u16 busnum;   /* 12: Bus number */
  char flag_setup;  /* 14: Same as text */
  char flag_data;   /* 15: Same as text; Binary zero is OK. */
  s64 ts_sec;   /* 16: gettimeofday */
  s32 ts_usec;    /* 24: gettimeofday */
  int status;   /* 28: */
  unsigned int length;  /* 32: Length of data (submitted or actual) */
  unsigned int len_cap; /* 36: Delivered length */
  union {     /* 40: */
    unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
    struct iso_rec {    /* Only for ISO */
      int error_count;
      int numdesc;
    } iso;
  } s;
  int interval;   /* 48: Only for Interrupt and ISO */
  int start_frame;  /* 52: For ISO */
  unsigned int xfer_flags; /* 56: copy of URB's transfer_flags */
  unsigned int ndesc; /* 60: Actual number of ISO descriptors */
  };        /* 64 total length */
These events can be received from a character device by reading with read(2),
with an ioctl(2), or by accessing the buffer with mmap. However, read(2)
only returns first 48 bytes for compatibility reasons.
The character device is usually called /dev/usbmonN, where N is the USB bus
number. Number zero (/dev/usbmon0) is special and means "all buses".
Note that specific naming policy is set by your Linux distribution.
If you create /dev/usbmon0 by hand, make sure that it is owned by root
and has mode 0600. Otherwise, unprivileged users will be able to snoop
keyboard traffic.
The following ioctl calls are available, with MON_IOC_MAGIC 0x92:
 MON_IOCQ_URB_LEN, defined as _IO(MON_IOC_MAGIC, 1)
This call returns the length of data in the next event. Note that majority of
events contain no data, so if this call returns zero, it does not mean that
no events are available.
 MON_IOCG_STATS, defined as _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
The argument is a pointer to the following structure::
  struct mon_bin_stats {
  u32 queued;
  u32 dropped;
  };
The member "queued" refers to the number of events currently queued in the
buffer (and not to the number of events processed since the last reset).
The member "dropped" is the number of events lost since the last call
to MON_IOCG_STATS.
 MON_IOCT_RING_SIZE, defined as _IO(MON_IOC_MAGIC, 4)
This call sets the buffer size. The argument is the size in bytes.
The size may be rounded down to the next chunk (or page). If the requested
size is out of [unspecified] bounds for this kernel, the call fails with
-EINVAL.
 MON_IOCQ_RING_SIZE, defined as _IO(MON_IOC_MAGIC, 5)
This call returns the current size of the buffer in bytes.
 MON_IOCX_GET, defined as _IOW(MON_IOC_MAGIC, 6, struct mon_get_arg)
 MON_IOCX_GETX, defined as _IOW(MON_IOC_MAGIC, 10, struct mon_get_arg)
These calls wait for events to arrive if none were in the kernel buffer,
then return the first event. The argument is a pointer to the following
structure::
  struct mon_get_arg {
  struct usbmon_packet *hdr;
  void *data;
  size_t alloc;   /* Length of data (can be zero) */
  };
Before the call, hdr, data, and alloc should be filled. Upon return, the area
pointed by hdr contains the next event structure, and the data buffer contains
the data, if any. The event is removed from the kernel buffer.
The MON_IOCX_GET copies 48 bytes to hdr area, MON_IOCX_GETX copies 64 bytes.
 MON_IOCX_MFETCH, defined as _IOWR(MON_IOC_MAGIC, 7, struct mon_mfetch_arg)
This ioctl is primarily used when the application accesses the buffer
with mmap(2). Its argument is a pointer to the following structure::
  struct mon_mfetch_arg {
  uint32_t *offvec; /* Vector of events fetched */
  uint32_t nfetch;  /* Number of events to fetch (out: fetched) */
  uint32_t nflush;  /* Number of events to flush */
  };
The ioctl operates in 3 stages.
First, it removes and discards up to nflush events from the kernel buffer.
The actual number of events discarded is returned in nflush.
Second, it waits for an event to be present in the buffer, unless the pseudo-
device is open with O_NONBLOCK.
Third, it extracts up to nfetch offsets into the mmap buffer, and stores
them into the offvec. The actual number of event offsets is stored into
the nfetch.
 MON_IOCH_MFLUSH, defined as _IO(MON_IOC_MAGIC, 8)
This call removes a number of events from the kernel buffer. Its argument
is the number of events to remove. If the buffer contains fewer events
than requested, all events present are removed, and no error is reported.
This works when no events are available too.
 FIONBIO
The ioctl FIONBIO may be implemented in the future, if there's a need.
In addition to ioctl(2) and read(2), the special file of binary API can
be polled with select(2) and poll(2). But lseek(2) does not work.
* Memory-mapped access of the kernel buffer for the binary API
The basic idea is simple:
To prepare, map the buffer by getting the current size, then using mmap(2).
Then, execute a loop similar to the one written in pseudo-code below::
   struct mon_mfetch_arg fetch;
   struct usbmon_packet *hdr;
   int nflush = 0;
   for (;;) {
      fetch.offvec = vec; // Has N 32-bit words
      fetch.nfetch = N;   // Or less than N
      fetch.nflush = nflush;
      ioctl(fd, MON_IOCX_MFETCH, &fetch);   // Process errors, too
      nflush = fetch.nfetch;       // This many packets to flush when done
      for (i = 0; i < nflush; i++) {
         hdr = (struct ubsmon_packet *) &mmap_area[vec[i]];
         if (hdr->type == '@')     // Filler packet
            continue;
         caddr_t data = &mmap_area[vec[i]] + 64;
         process_packet(hdr, data);
      }
   }
Thus, the main idea is to execute only one ioctl per N events.
Although the buffer is circular, the returned headers and data do not cross
the end of the buffer, so the above pseudo-code does not need any gathering.

3.2   简单的分析

image.png

image.png

image.png

其中

"="  表示后面紧跟数据流
">"  表示这是一次 Output 数据传输
"<"  表示这是一次 Input 数据传输

目录
相关文章
|
16天前
|
存储 缓存 Linux
Linux IO的奥秘:深入探索数据流动的魔法
Linux I/O(输入/输出)系统是其核心功能之一,负责处理数据在系统内部及与外界之间的流动。为了优化这一流程,Linux进行了一系列努力和抽象化,以提高效率、灵活性和易用性。🚀
Linux IO的奥秘:深入探索数据流动的魔法
|
1月前
|
存储 Shell Linux
【Shell 命令集合 磁盘管理 】Linux读取、转换并输出数据 dd命令使用教程
【Shell 命令集合 磁盘管理 】Linux读取、转换并输出数据 dd命令使用教程
31 0
|
1月前
|
算法 Shell Linux
【Shell 命令集合 备份压缩 】⭐Linux 压缩 恢复bzip2损坏数据 bzip2recover命令 使用指南
【Shell 命令集合 备份压缩 】⭐Linux 压缩 恢复bzip2损坏数据 bzip2recover命令 使用指南
33 0
|
2天前
|
Linux 编译器 Android开发
FFmpeg开发笔记(九)Linux交叉编译Android的x265库
在Linux环境下,本文指导如何交叉编译x265的so库以适应Android。首先,需安装cmake和下载android-ndk-r21e。接着,下载x265源码,修改crosscompile.cmake的编译器设置。配置x265源码,使用指定的NDK路径,并在配置界面修改相关选项。随后,修改编译规则,编译并安装x265,调整pc描述文件并更新PKG_CONFIG_PATH。最后,修改FFmpeg配置脚本启用x265支持,编译安装FFmpeg,将生成的so文件导入Android工程,调整gradle配置以确保顺利运行。
20 1
FFmpeg开发笔记(九)Linux交叉编译Android的x265库
|
11天前
|
缓存 运维 监控
Linux系统监控利器:探索常用命令及数据保存技巧
Linux系统监控利器:探索常用命令及数据保存技巧
29 4
Linux系统监控利器:探索常用命令及数据保存技巧
|
16天前
|
存储 缓存 安全
Linux IO:打开数据之窗的魔法
Linux I/O(输入/输出)是操作系统中一个至关重要的组成部分,它涉及到数据在内存🧠、存储设备💾、网络接口🌐等之间的传输过程。在Linux中,I/O操作不仅仅是文件读写那么简单,它包括了一系列复杂的机制和策略,旨在提高数据处理的效率,保证系统的稳定性和性能。📊
Linux IO:打开数据之窗的魔法
|
18天前
|
Linux API C语言
FFmpeg开发笔记(一)搭建Linux系统的开发环境
本文指导初学者如何在Linux上搭建FFmpeg开发环境。首先,由于FFmpeg依赖第三方库,可以免去编译源码的复杂过程,直接安装预编译的FFmpeg动态库。推荐网站<https://github.com/BtbN/FFmpeg-Builds/releases>提供适用于不同系统的FFmpeg包。但在安装前,需确保系统有不低于2.22版本的glibc库。详细步骤包括下载glibc-2.23源码,配置、编译和安装。接着,下载Linux版FFmpeg安装包,解压至/usr/local/ffmpeg,并设置环境变量。最后编写和编译简单的C或C++测试程序验证FFmpeg环境是否正确配置。
35 8
FFmpeg开发笔记(一)搭建Linux系统的开发环境
|
1月前
|
存储 缓存 Shell
【Shell 命令集合 磁盘维护 】⭐⭐⭐Linux 将文件系统的缓冲区数据立即写入磁盘 sync 命令使用教程
【Shell 命令集合 磁盘维护 】⭐⭐⭐Linux 将文件系统的缓冲区数据立即写入磁盘 sync 命令使用教程
45 1
|
12天前
|
NoSQL Linux Shell
常用的 Linux 命令
常用的 Linux 命令
35 9