【通俗易懂】机器学习中 L1 和 L2 正则化的直观解释

简介: 机器学习中,如果参数过多,模型过于复杂,容易造成过拟合(overfit)。

机器学习中,如果参数过多,模型过于复杂,容易造成过拟合(overfit)。即模型在训练样本数据上表现的很好,但在实际测试样本上表现的较差,不具备良好的泛化能力。为了避免过拟合,最常用的一种方法是使用使用正则化,例如 L1 和 L2 正则化。但是,正则化项是如何得来的?其背后的数学原理是什么?L1 正则化和 L2 正则化之间有何区别?本文将给出直观的解释。


1  L2 正则化直观解释


L2 正则化公式非常简单,直接在原来的损失函数基础上加上权重参数的平方和:


image.png


其中,Ein 是未包含正则化项的训练样本误差,λ 是正则化参数,可调。但是正则化项是如何推导的?接下来,我将详细介绍其中的物理意义。


我们知道,正则化的目的是限制参数过多或者过大,避免模型更加复杂。例如,使用多项式模型,如果使用 10 阶多项式,模型可能过于复杂,容易发生过拟合。所以,为了防止过拟合,我们可以将其高阶部分的权重 w 限制为 0,这样,就相当于从高阶的形式转换为低阶。


为了达到这一目的,最直观的方法就是限制 w 的个数,但是这类条件属于 NP-hard 问题,求解非常困难。所以,一般的做法是寻找更宽松的限定条件:


image.png


上式是对 w 的平方和做数值上界限定,即所有w 的平方和不超过参数 C。这时候,我们的目标就转换为:最小化训练样本误差 Ein,但是要遵循 w 平方和小于 C 的条件。


下面,我用一张图来说明如何在限定条件下,对 Ein 进行最小化的优化。

image.png

如上图所示,蓝色椭圆区域是最小化 Ein 区域,红色圆圈是 w 的限定条件区域。在没有限定条件的情况下,一般使用梯度下降算法,在蓝色椭圆区域内会一直沿着 w 梯度的反方向前进,直到找到全局最优值 wlin。例如空间中有一点 w(图中紫色点),此时 w 会沿着 -∇Ein 的方向移动,如图中蓝色箭头所示。但是,由于存在限定条件,w 不能离开红色圆形区域,最多只能位于圆上边缘位置,沿着切线方向。w 的方向如图中红色箭头所示。


那么问题来了,存在限定条件,w 最终会在什么位置取得最优解呢?也就是说在满足限定条件的基础上,尽量让 Ein 最小。


我们来看,w 是沿着圆的切线方向运动,如上图绿色箭头所示。运动方向与 w 的方向(红色箭头方向)垂直。运动过程中,根据向量知识,只要 -∇Ein 与运行方向有夹角,不垂直,则表明 -∇Ein 仍会在 w 切线方向上产生分量,那么 w 就会继续运动,寻找下一步最优解。只有当 -∇Ein 与 w 的切线方向垂直时,-∇Ein在 w 的切线方向才没有分量,这时候 w 才会停止更新,到达最接近 wlin 的位置,且同时满足限定条件。


image.png


-∇Ein 与 w 的切线方向垂直,即 -∇Ein 与 w 的方向平行。如上图所示,蓝色箭头和红色箭头互相平行。这样,根据平行关系得到:

image.png

这样,我们就把优化目标和限定条件整合在一个式子中了。也就是说只要在优化 Ein 的过程中满足上式,就能实现正则化目标。


接下来,重点来了!根据最优化算法的思想:梯度为 0 的时候,函数取得最优值。已知 ∇Ein 是 Ein 的梯度,观察上式,λw 是否也能看成是某个表达式的梯度呢?


当然可以!λw 可以看成是 1/2λw*w 的梯度:

image.png

image.png


之所以这样定义,是因为对 Eaug 求导,正好得到上面所求的平行关系式。上式中等式右边第二项就是 L2 正则化项。


这样, 我们从图像化的角度,分析了 L2 正则化的物理意义,解释了带 L2 正则化项的损失函数是如何推导而来的。


2    L1 正则化直观解释

L1 正则化公式也很简单,直接在原来的损失函数基础上加上权重参数的绝对值:

image.png

Ein 优化算法不变,L1 正则化限定了 w 的有效区域是一个正方形,且满足 |w| < C。空间中的点 w 沿着 -∇Ein 的方向移动。但是,w 不能离开红色正方形区域,最多只能位于正方形边缘位置。其推导过程与 L2 类似,此处不再赘述。


3   L1 与 L2 解的稀疏性

介绍完 L1 和 L2 正则化的物理解释和数学推导之后,我们再来看看它们解的分布性。

image.png

以二维情况讨论,上图左边是 L2 正则化,右边是 L1 正则化。从另一个方面来看,满足正则化条件,实际上是求解蓝色区域与黄色区域的交点,即同时满足限定条件和 Ein 最小化。对于 L2 来说,限定区域是圆,这样,得到的解 w1 或 w2 为 0 的概率很小,很大概率是非零的。


对于 L1 来说,限定区域是正方形,方形与蓝色区域相交的交点是顶点的概率很大,这从视觉和常识上来看是很容易理解的。也就是说,方形的凸点会更接近 Ein 最优解对应的 wlin 位置,而凸点处必有 w1 或 w2 为 0。这样,得到的解 w1 或 w2 为零的概率就很大了。所以,L1 正则化的解具有稀疏性。


扩展到高维,同样的道理,L2 的限定区域是平滑的,与中心点等距;而 L1 的限定区域是包含凸点的,尖锐的。这些凸点更接近 Ein 的最优解位置,而在这些凸点上,很多 wj 为 0。


关于 L1 更容易得到稀疏解的原因,有一个很棒的解释,请见下面的链接:


https://www.zhihu.com/question/37096933/answer/70507353


4   正则化参数 λ

正则化是结构风险最小化的一种策略实现,能够有效降低过拟合。损失函数实际上包含了两个方面:一个是训练样本误差。一个是正则化项。其中,参数 λ 起到了权衡的作用。

image.png


以 L2 为例,若
λ 很小,对应上文中的 C 值就很大。这时候,圆形区域很大,能够让 w 更接近 Ein 最优解的位置。若 λ 近似为 0,相当于圆形区域覆盖了最优解位置,这时候,正则化失效,容易造成过拟合。相反,若 λ 很大,对应上文中的 C 值就很小。这时候,圆形区域很小,w 离 Ein 最优解的位置较远。w 被限制在一个很小的区域内变化,w 普遍较小且接近 0,起到了正则化的效果。但是,λ 过大容易造成欠拟合。欠拟合和过拟合是两种对立的状态。


相关文章
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】
机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】
|
8月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习】解释什么是线性回归?
【5月更文挑战第15天】【机器学习】解释什么是线性回归?
|
5月前
|
机器学习/深度学习 算法
【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
支持向量机(SVM)的介绍,包括其基本概念、与逻辑回归(LR)和决策树(DT)的直观和理论对比,如何选择这些算法,SVM为何采用间隔最大化,求解SVM时为何转换为对偶问题,核函数的引入原因,以及SVM对缺失数据的敏感性。
95 3
|
5月前
|
机器学习/深度学习 算法
【机器学习】支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择(面试回答)?
文章对支持向量机(SVM)、逻辑回归(LR)和决策树(DT)进行了直观和理论上的对比,并提供了在选择这些算法时的考虑因素,包括模型复杂度、损失函数、数据量需求、对缺失值的敏感度等。
75 1
|
7月前
|
机器学习/深度学习 人工智能 算法
【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
99 3
|
6月前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的正则化技术
在机器学习领域,正则化技术是防止过拟合的关键手段之一。本文将深入探讨L1与L2正则化方法的理论基础、实际应用及其对模型性能的影响。通过对比分析与案例研究,本文旨在为读者提供一套系统的正则化应用框架,帮助构建更加健壮和可靠的机器学习模型。
|
8月前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】解释什么是K-means聚类?
【5月更文挑战第11天】【机器学习】解释什么是K-means聚类?
|
8月前
|
机器学习/深度学习 监控 算法
【机器学习】提供学习率的直观解释
【5月更文挑战第18天】【机器学习】提供学习率的直观解释
|
8月前
|
机器学习/深度学习 算法 数据可视化
【Python机器学习专栏】决策树算法的实现与解释
【4月更文挑战第30天】本文探讨了决策树算法,一种流行的监督学习方法,用于分类和回归。文章阐述了决策树的基本原理,其中内部节点代表特征判断,分支表示判断结果,叶节点代表类别。信息增益等标准用于衡量特征重要性。通过Python的scikit-learn库展示了构建鸢尾花数据集分类器的示例,包括训练、预测、评估和可视化决策树。最后,讨论了模型解释和特征重要性评估在优化中的作用。
149 1
|
8月前
|
机器学习/深度学习 监控 数据可视化
Scikit-learn与可视化:让机器学习结果更直观
【4月更文挑战第17天】本文探讨了如何使用Scikit-learn和可视化工具使机器学习结果更直观。Scikit-learn作为Python的开源机器学习库,结合Matplotlib、Seaborn等可视化库,便于数据探索、模型训练过程监控及结果展示。通过示例代码,展示了数据探索的pairplot、模型训练准确率曲线的绘制以及聚类结果的散点图,强调了可视化在提升模型理解度和应用普及性上的作用。随着可视化技术进步,机器学习将变得更直观易懂。