AI促进药物发现:未来是多细胞研究

简介: AI促进药物发现:未来是多细胞研究

Phenomic AI的Sam Cooper博士和Michael Briskin讨论了人工智能(AI)如何使他们能够针对多细胞相互作用进行药物开发。

image.png许多预后最差的癌症由于其免疫抑制性的微环境而对免疫疗法产生耐药性。然而,研究和靶向这些癌症并不是一项简单的任务,主要是因为这种环境依赖于不同细胞类型之间的众多相互作用,这意味着孤立地研究单个细胞类型的传统方法无法提供准确的代表性。


虽然包含多种不同细胞类型的多细胞培养物和器官体可以提供更多生理相关的模型,但要确定特定细胞在疾病中的作用以及研究性治疗如何影响它们,需要进行单细胞分析,这又会产生大量的数据集。


理解这些数据对于理解这些复杂的疾病,从而成功开发候选药物至关重要。Drug Target Review的Hannah Balfour采访了Phenomic AI的首席执行官Sam Cooper博士和该公司的首席科学官Michael Briskin博士,讨论了他们为什么使用人工智能(AI)来分析他们的湿实验室数据,以及如何使他们能够开发针对复杂生物学的治疗性抗体,如肿瘤基质。


为什么要使用AI分析多细胞培养数据?


Cooper解释说:“多细胞模型具有多种不同的细胞类型,它们可以共同生长和相互作用,而单一培养只有一种类型。通常,使用多细胞培养物时,制药公司会进行大量分析。他们一起分析所有细胞并获得单一结果。但是,这不能显示培养物中每个单个细胞正在发生什么。相反,使用成像和单细胞RNA测序技术来了解单细胞水平上发生的事情。这会产生大量数据,将使用一种深层神经网络对其进行处理,以消化和识别存在的细胞类型以及它们如何受到影响。


image.png

image.png

允许研究人员做的是针对不同细胞类型之间的相互作用。当研究肿瘤微环境时,这是关键,因为它包含许多彼此相互作用的细胞类型。通过一起培养和试验这些细胞类型,但将它们作为个体进行分析,能够观察细胞-细胞反馈以及不同细胞产物之间的相互作用,并确定其中哪些可能导致疾病。


基于AI识别肿瘤基质的药物靶标


为什么要研究和靶向肿瘤基质?


Briskin博士解释说,肿瘤基质是肿瘤学领域特别理想的靶标,因为它积极参与在肿瘤周围建立免疫抑制或免疫排斥的环境,从而阻止了它们对免疫疗法的有效反应。他说,这些通常是预后最差的肿瘤,并补充说一些例子包括胰腺癌,结直肠癌,前列腺癌和乳腺癌子集。


多细胞培养和AI在此应用中有何帮助?


为了有效地研究肿瘤基质,Phenomic开发了一个平台,该平台使用深度学习工具来分析实验数据并消除多细胞分析中靶标抑制作用的影响。迄今为止,这已使研究人员能够识别肿瘤基质中的新靶标并开发抗体疗法,他们希望将其推进临床前研究中。肿瘤基质是一个复杂的结构,富含许多细胞类型,包括基质蛋白和成纤维细胞,它们相互作用产生免疫抑制性微环境。为了了解和开发用于肿瘤基质的药物,需要多细胞模型和多组学方法。


药物研发中使用AI


Cooper说,这一领域令人兴奋,自从1980年代首次出现以来,人工智能已经发展了很多。其在药物发现中的当前用途分为三个不同的组:


最早的应用是设计化合物或蛋白质,现在有大量使用高级机器学习(ML)的公司涌入。


出现的第二种方法是检查大型临床数据集并分析某种药物是否可以使特定患者群体受益。


使用ML分析大型实验和组织数据集,以从分子水平帮助理解健康和疾病中的生物学。


未来用于药物发现的AI的发展而言,Phenomic正处于使用它来探索蛋白质组学的边缘,而除此之外,可能还在研究代谢组学和糖组学。这意味着数据集将变得更加丰富,甚至更有价值。


Cooper和Briskin得出结论,ML能够从多细胞研究中消化大量数据集的能力意味着它正在成为增进对健康和疾病中细胞复杂相互作用的生物学认识的日益重要的工具。


目录
相关文章
|
2月前
|
人工智能 自然语言处理 算法
谷歌DeepMind研究再登Nature封面,隐形水印让AI无所遁形
近日,谷歌DeepMind团队在《自然》期刊上发表了一项名为SynthID-Text的研究成果。该方法通过引入隐形水印,为大型语言模型(LLM)生成的文本添加统计签名,从而实现AI生成文本的准确识别和追踪。SynthID-Text采用独特的Tournament采样算法,在保持文本质量的同时嵌入水印,显著提高了水印检测率。实验结果显示,该方法在多个LLM中表现出色,具有广泛的应用潜力。论文地址:https://www.nature.com/articles/s41586-024-08025-4。
95 26
|
5天前
|
存储 人工智能 搜索推荐
Shandu:开源AI研究黑科技!自动挖掘多层级信息,智能生成结构化报告
Shandu 是一款开源的 AI 研究自动化工具,结合 LangChain 和 LangGraph 技术,能够自动化地进行多层次信息挖掘和分析,生成结构化的研究报告,适用于学术研究、市场分析和技术探索等多种场景。
80 8
Shandu:开源AI研究黑科技!自动挖掘多层级信息,智能生成结构化报告
|
14天前
|
传感器 人工智能 机器人
【01】人形机器人研究试验-被有些网友痛骂“工业垃圾”“人工智障”上春晚的人形AI机器人-宇树科技机器人到底怎么样??-本系列优雅草卓伊凡亲自尝试下人形机器人的制造-从0开始学习并且制作机器人-可以跟随卓伊凡
【01】人形机器人研究试验-被有些网友痛骂“工业垃圾”“人工智障”上春晚的人形AI机器人-宇树科技机器人到底怎么样??-本系列优雅草卓伊凡亲自尝试下人形机器人的制造-从0开始学习并且制作机器人-可以跟随卓伊凡
46 1
【01】人形机器人研究试验-被有些网友痛骂“工业垃圾”“人工智障”上春晚的人形AI机器人-宇树科技机器人到底怎么样??-本系列优雅草卓伊凡亲自尝试下人形机器人的制造-从0开始学习并且制作机器人-可以跟随卓伊凡
|
23天前
|
机器学习/深度学习 人工智能 自然语言处理
通古大模型:古籍研究者狂喜!华南理工开源文言文GPT:AI自动断句+写诗翻译,24亿语料喂出来的学术神器
通古大模型由华南理工大学开发,专注于古籍文言文处理,具备强大的古文句读、文白翻译和诗词创作功能。
101 11
通古大模型:古籍研究者狂喜!华南理工开源文言文GPT:AI自动断句+写诗翻译,24亿语料喂出来的学术神器
|
1月前
|
人工智能 自然语言处理 API
OpenDeepResearcher:开源 AI 研究工具,自动完成搜索、评估、提取和生成报告
OpenDeepResearcher 是一款开源 AI 研究工具,支持异步处理、去重功能和 LLM 驱动的决策,帮助用户高效完成复杂的信息查询和分析任务。
189 18
OpenDeepResearcher:开源 AI 研究工具,自动完成搜索、评估、提取和生成报告
|
1天前
|
存储 人工智能 缓存
AI变革药物研发:深势科技的云原生实践之路
近日,阿里云与深势科技联合推出创新的Bohrium®科研云平台和Hermite®药物计算设计平台,实现了分子模拟技术的飞跃。
|
1月前
|
存储 人工智能
Scaling Law或将终结?哈佛MIT预警:低精度量化已无路可走,重磅研究掀翻AI圈
哈佛大学和麻省理工学院的研究人员最近发布了一项重磅研究,对Scaling Law在低精度量化中的应用提出严重质疑。研究表明,随着训练数据增加,低精度量化带来的性能损失也增大,且与模型大小无关。这挑战了通过增加规模提升性能的传统观点,提醒我们在追求效率时不能忽视性能损失。该研究结果在AI圈内引发广泛讨论,提示未来需探索其他方法来提高模型效率,如混合精度训练、模型压缩及新型硬件架构。论文地址:https://arxiv.org/pdf/2411.04330。
61 11
|
2月前
|
机器学习/深度学习 人工智能 算法
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
97 13
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
AI自己长出了类似大脑的脑叶?新研究揭示LLM特征的惊人几何结构
近年来,大型语言模型(LLM)的内部运作机制备受关注。麻省理工学院的研究人员在论文《The Geometry of Concepts: Sparse Autoencoder Feature Structure》中,利用稀疏自编码器(SAE)分析LLM的激活空间,揭示了其丰富的几何结构。研究发现,特征在原子、大脑和星系三个尺度上展现出不同的结构,包括晶体结构、中尺度模块化结构和大尺度点云结构。这些发现不仅有助于理解LLM的工作原理,还可能对模型优化和其他领域产生重要影响。
104 25
|
4月前
|
人工智能 开发者
人类自身都对不齐,怎么对齐AI?新研究全面审视偏好在AI对齐中的作用
论文《AI对齐中的超越偏好》挑战了偏好主义AI对齐方法,指出偏好无法全面代表人类价值观,存在冲突和变化,并受社会影响。文章提出基于角色的对齐方案,强调AI应与其社会角色相关的规范标准一致,而非仅关注个人偏好,旨在实现更稳定、适用性更广且更符合社会利益的AI对齐。论文链接:https://arxiv.org/pdf/2408.16984
64 2

热门文章

最新文章