OushuDB 体验新执行器

简介: 本章节通过TPCH lineitem 表来展示新执行器的使用。

image.png

本章节通过TPCH lineitem 表来展示新执行器的使用。

建立e_lineitem外部表用来生成TPCH lineitem 数据:

CREATE EXTERNAL WEB TABLE E_LINEITEM ( L_ORDERKEY    INT8 ,L_PARTKEY     INTEGER ,L_SUPPKEY     INTEGER ,L_LINENUMBER  INTEGER ,L_QUANTITY    FLOAT ,L_EXTENDEDPRICE  FLOAT ,L_DISCOUNT    FLOAT ,L_TAX         FLOAT ,L_RETURNFLAG  VARCHAR(1) ,L_LINESTATUS  VARCHAR(1) ,L_SHIPDATE    TEXT ,L_COMMITDATE  TEXT ,L_RECEIPTDATE TEXT ,L_SHIPINSTRUCT CHAR(25) ,L_SHIPMODE     VARCHAR(10) ,L_COMMENT      VARCHAR(44) )EXECUTE 'bash -c "$GPHOME/bin/dbgen -b $GPHOME/bin/dists.dss -T L -s 1 -N 6 -n $((GP_SEGMENT_ID + 1))"'on 6 format 'text' (delimiter '|');

创建ORC 表

CREATE TABLE lineitem(  L_ORDERKEY    INT8,L_PARTKEY     INTEGER,L_SUPPKEY     INTEGER,L_LINENUMBER  INTEGER,L_QUANTITY    FLOAT,L_EXTENDEDPRICE  FLOAT,L_DISCOUNT    FLOAT,L_TAX         FLOAT,L_RETURNFLAG  TEXT,L_LINESTATUS  TEXT,L_SHIPDATE    TEXT,L_COMMITDATE  TEXT,L_RECEIPTDATE TEXT,L_SHIPINSTRUCT TEXT,L_SHIPMODE     TEXT,L_COMMENT      TEXT)WITH (APPENDONLY = true, OIDS = FALSE, ORIENTATION = orc);

插入数据

INSERT INTO lineitem SELECT * FROM e_lineitem;

从下面的例子可以看到新执行器对于性能的大幅改进。

-----获取表行数------postgres=# set new_executor = on;SETpostgres=# SELECT COUNT(*) FROM lineitem;count---------6001215(1 row)Time: 17.006 mspostgres=# set new_executor = off;SETpostgres=# SELECT COUNT(*) FROM lineitem;count---------6001215(1 row)Time: 213.248 ms-----TPCH 查询 1 ------postgres=# set new_executor = on;SETpostgres=#  SELECTl_returnflag,l_linestatus,sum(l_quantity)::bigint as sum_qty,sum(l_extendedprice)::bigint as sum_base_price,sum(l_extendedprice * (1 - l_discount))::bigint as sum_disc_price,sum(l_extendedprice * (1 - l_discount) * (1 + l_tax))::bigint as sum_charge,avg(l_quantity)::bigint as avg_qty,avg(l_extendedprice)::bigint as avg_price,avg(l_discount)::bigint as avg_disc,count(*) as count_orderFROMlineitemWHEREl_shipdate <= '1998-08-20'GROUP BYl_returnflag,l_linestatus;l_returnflag | l_linestatus | sum_qty  | sum_base_price | sum_disc_price |  sum_charge  | avg_qty | avg_price | avg_disc | count_order--------------+--------------+----------+----------------+----------------+--------------+---------+-----------+----------+-------------R            | F            | 37719753 |    56568041381 |    53741292685 |  55889619120 |      26 |     38251 |        0 |     1478870N            | F            |   991417 |     1487504710 |     1413082168 |   1469649223 |      26 |     38284 |        0 |       38854A            | F            | 37734107 |    56586554401 |    53758257135 |  55909065223 |      26 |     38273 |        0 |     1478493N            | O            | 73808911 |   110700990251 |   105167436999 | 109377979031 |      26 |     38248 |        0 |     2894278(4 rows)Time: 234.376 mspostgres=# set new_executor = off;SETpostgres=#  SELECTl_returnflag,l_linestatus,sum(l_quantity)::bigint as sum_qty,sum(l_extendedprice)::bigint as sum_base_price,sum(l_extendedprice * (1 - l_discount))::bigint as sum_disc_price,sum(l_extendedprice * (1 - l_discount) * (1 + l_tax))::bigint as sum_charge,avg(l_quantity)::bigint as avg_qty,avg(l_extendedprice)::bigint as avg_price,avg(l_discount)::bigint as avg_disc,count(*) as count_orderFROMlineitemWHEREl_shipdate <= '1998-08-20'GROUP BYl_returnflag,l_linestatus;l_returnflag | l_linestatus | sum_qty  | sum_base_price | sum_disc_price |  sum_charge  | avg_qty | avg_price | avg_disc | count_order--------------+--------------+----------+----------------+----------------+--------------+---------+-----------+----------+-------------R            | F            | 37719753 |    56568041381 |    53741292685 |  55889619120 |      26 |     38251 |        0 |     1478870N            | F            |   991417 |     1487504710 |     1413082168 |   1469649223 |      26 |     38284 |        0 |       38854A            | F            | 37734107 |    56586554401 |    53758257135 |  55909065223 |      26 |     38273 |        0 |     1478493N            | O            | 73808911 |   110700990251 |   105167436999 | 109377979031 |      26 |     38248 |        0 |     2894278(4 rows)Time: 2341.147 ms
目录
相关文章
|
Python
分布式框架ray的基本使用记录
分布式框架ray的基本使用记录
792 0
|
1月前
|
消息中间件 存储 弹性计算
云端问道13期方案教学-告别资源瓶颈,函数计算驱动多媒体文件处理
《云端问道13期方案教学》由阿里云技术团队周博宇主讲,聚焦如何使用函数计算突破资源瓶颈,高效处理多媒体文件。方案涵盖六大要点:寻找云需求解决方案、选择函数计算的原因、对比不同文件处理方式、实现多媒体文件处理、应用场景广泛性及优惠购买推荐。通过将文件处理从主应用拆分,利用函数计算的按需扩展和自动弹性特性,确保核心业务稳定,并大幅降低成本。适用于图片、视频处理等多种场景。
云端问道13期方案教学-告别资源瓶颈,函数计算驱动多媒体文件处理
|
1月前
|
弹性计算 监控 关系型数据库
云端问道13期实操教学-告别资源瓶颈,函数计算驱动多媒体文件处理
《云端问道13期实操教学》介绍了使用函数计算实现多媒体文件处理的解决方案,分为五部分:方案概览、部署准备、一键部署、完成及清理和主流应用场景。通过创建VPC、ECS、RDS等资源,演示了如何利用函数计算处理PPT加水印并转PDF,解决了资源瓶颈问题。最后讲解了函数计算在部署外部应用、文件处理和音视频处理中的优势。
|
6月前
|
关系型数据库 Serverless API
神秘的 ADB Serverless 模式,究竟是怎样实现数据共享的?答案等你来揭晓!
【8月更文挑战第27天】在数字化时代,数据共享至关重要。阿里云AnalyticDB for MySQL的Serverless模式提供了一种高效便捷的解决方案。它采用多租户架构,确保数据安全隔离的同时支持资源共享;具备自动弹性伸缩能力,优化资源利用;支持多样化的数据导入导出方式及丰富的API,便于集成到各类应用中,实现数据价值最大化。无论是初创企业还是大型组织,均可从中获益。
104 0
|
9月前
|
存储 缓存 数据安全/隐私保护
说一说你对移动应用中的离线模式的实现。
【4月更文挑战第2天】移动应用的离线模式允许用户在无网情况下仍能部分使用应用,依赖于数据缓存和本地存储。应用在联网时缓存关键数据,离线时从本地读取。数据同步通过延迟策略在重连时完成,敏感信息加密存储并定期备份。开发者还需关注用户体验、性能优化及错误处理,确保离线模式的无缝衔接和稳定性。
318 1
|
9月前
|
Serverless API 数据安全/隐私保护
Serverless 应用引擎产品使用之阿里函数计算中在本地搭建Windows开发环境与阿里云函数计算进行交互如何解决
阿里云Serverless 应用引擎(SAE)提供了完整的微服务应用生命周期管理能力,包括应用部署、服务治理、开发运维、资源管理等功能,并通过扩展功能支持多环境管理、API Gateway、事件驱动等高级应用场景,帮助企业快速构建、部署、运维和扩展微服务架构,实现Serverless化的应用部署与运维模式。以下是对SAE产品使用合集的概述,包括应用管理、服务治理、开发运维、资源管理等方面。
110 0
|
数据库
易搭工作流引擎用是什么开源 还是阿里自研产品,零代码平台场景页面映射数据库表是动态创建,采用什么框架处理,怎么让系统产生高并发能力。易搭权限有没有了解,求解。
易搭工作流引擎用是什么开源 还是阿里自研产品,零代码平台场景页面映射数据库表是动态创建,采用什么框架处理,怎么让系统产生高并发能力。易搭权限有没有了解,求解。
|
分布式计算 前端开发 数据可视化
你只会用 xxl-job?一款更强大、新一代分布式任务调度框架来了,太强大了!
你只会用 xxl-job?一款更强大、新一代分布式任务调度框架来了,太强大了!
1012 0
你只会用 xxl-job?一款更强大、新一代分布式任务调度框架来了,太强大了!
OushuDB 体验新执行器
OushuDB 体验新执行器
57 0
|
消息中间件 监控 算法
分布式定时任务框架选型,写的太好了 !
分布式定时任务框架选型,写的太好了 !