伪异步IO

简介: 伪异步IO

前言:同步阻塞IO会有很大的性能问题,那么使用线程池控制呢,就有了伪异步IO,通过线程池对消息队列和最大线程数进行控制,例子见下


package com.honzh.mwq.bio.server.handler;

import java.util.concurrent.ArrayBlockingQueue;

import java.util.concurrent.ExecutorService;

import java.util.concurrent.ThreadPoolExecutor;

import java.util.concurrent.TimeUnit;

public class TimeServerHandlerPool {

private ExecutorService service;

/**

* @Title: TimeServerHandlerPool

* @Description: 构造方法需要进行说明一下:<br>

* <p>1.Runtime.getRuntime().availableProcessors()可以向Java虚拟机获取可用处理器的数目</p>

* <p>2.同时你可以在cmd命令下通过echo %NUMBER_OF_PROCESSORS%获取可用的cpu可用线程数</p>

* <p>3.我的机器是i3 3220,是一个2核心4线程的处理器,那么在不考虑资源冲突的情况下,可以支持虚拟4核的任务</p>

* <p>4.同时查看API可以知道,对于有界队列,corepoolsize和maxpoolsize之间有一定的关系,在execute执行任务时,如果运行的线程小于core,那么始终会创建新的线程,

* 如果运行的线程等于大于core,那么就会将请求加入队列,如果无法加入队列,则创建新的线程,如果线程数大于max,则任务将被拒绝。

* </p>
  * 
  */
  public TimeServerHandlerPool() {
  service = new ThreadPoolExecutor(Runtime.getRuntime().availableProcessors(), 100, 120L, TimeUnit.SECONDS,
    new ArrayBlockingQueue<Runnable>(1000));
  }
  public void execute(Runnable task) {
  service.execute(task);
  }
}

这个类非常关键,注意注释中所说的内容,


另外再看server类

TimeServerHandlerPool pool = new TimeServerHandlerPool();
    Socket socket = null;
    while (true) {
    socket = server.accept();
    pool.execute(new TimeServerHandler(socket));
    }


通过线程池管理请求任务。


总结:伪异步IO有效的解决了资源宕机的问题,但是依然有如下问题存在,输入输出流依然是阻塞的,假如server返回信息阻塞了1分钟,那么对应的client在获取资源的时候也会在读取流中阻塞1分钟,接着假如以后的请求都不能再加入到阻塞队列后,新的请求将会被拒绝,那么这就像等于系统崩溃了。

相关文章
|
1月前
|
并行计算 数据处理 Python
Python并发编程迷雾:IO密集型为何偏爱异步?CPU密集型又该如何应对?
在Python的并发编程世界中,没有万能的解决方案,只有最适合特定场景的方法。希望本文能够为你拨开迷雾,找到那条通往高效并发编程的光明大道。
42 2
|
2月前
|
开发框架 并行计算 算法
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
46 4
|
6月前
|
调度 数据库 Python
【专栏】异步IO在处理IO密集型任务中的高效性
【4月更文挑战第27天】本文介绍了Python并发编程和异步IO,包括并发的基本概念(多线程、多进程、协程),线程与进程的实现(threading和multiprocessing模块),协程的使用(asyncio模块),以及异步IO的原理和优势。强调了异步IO在处理IO密集型任务中的高效性,指出应根据任务类型选择合适的并发技术。
161 2
|
2月前
|
算法 Java 程序员
解锁Python高效之道:并发与异步在IO与CPU密集型任务中的精准打击策略!
在数据驱动时代,高效处理大规模数据和高并发请求至关重要。Python凭借其优雅的语法和强大的库支持,成为开发者首选。本文将介绍Python中的并发与异步编程,涵盖并发与异步的基本概念、IO密集型任务的并发策略、CPU密集型任务的并发策略以及异步IO的应用。通过具体示例,展示如何使用`concurrent.futures`、`asyncio`和`multiprocessing`等库提升程序性能,帮助开发者构建高效、可扩展的应用程序。
113 0
|
4月前
|
并行计算 数据处理 Python
Python并发编程迷雾:IO密集型为何偏爱异步?CPU密集型又该如何应对?
【7月更文挑战第17天】Python并发编程中,异步编程(如`asyncio`)在IO密集型任务中提高效率,利用等待时间执行其他任务。但对CPU密集型任务,由于GIL限制,多线程效率不高,此时应选用`multiprocessing`进行多进程并行计算以突破限制。选择合适的并发策略是关键:异步适合IO,多进程适合CPU。理解这些能帮助构建高效并发程序。
118 6
|
4月前
|
算法 Java 程序员
解锁Python高效之道:并发与异步在IO与CPU密集型任务中的精准打击策略!
【7月更文挑战第17天】在数据驱动时代,Python凭借其优雅语法和强大库支持成为并发处理大规模数据的首选。并发与异步编程是关键,包括多线程、多进程和异步IO。对于IO密集型任务,如网络请求,可使用`concurrent.futures`和`asyncio`;CPU密集型任务则推荐多进程,如`multiprocessing`;`asyncio`适用于混合任务,实现等待IO时执行CPU任务。通过这些工具,开发者能有效优化资源,提升系统性能。
93 4
|
4月前
|
开发框架 并行计算 .NET
从菜鸟到大神:Python并发编程深度剖析,IO与CPU的异步战争!
【7月更文挑战第18天】Python并发涉及多线程、多进程和异步IO(asyncio)。异步IO适合IO密集型任务,如并发HTTP请求,能避免等待提高效率。多进程在CPU密集型任务中更优,因可绕过GIL限制实现并行计算。通过正确选择并发策略,开发者能提升应用性能和响应速度。
106 3
|
4月前
|
开发框架 并行计算 算法
揭秘Python并发神器:IO密集型与CPU密集型任务的异步革命,你竟还傻傻分不清?
【7月更文挑战第18天】Python并发编程中,异步IO适合IO密集型任务,如异步HTTP请求,利用`asyncio`和`aiohttp`实现并发抓取,避免等待延迟。而对于CPU密集型任务,如并行计算斐波那契数列,多进程通过`multiprocessing`库能绕过GIL限制实现并行计算。选择正确的并发模型能显著提升性能。
88 2
|
4月前
|
开发框架 数据挖掘 .NET
显微镜下的Python并发:细说IO与CPU密集型任务的异步差异,助你精准施策!
【7月更文挑战第16天】在Python并发编程中,理解和区分IO密集型与CPU密集型任务至关重要。IO密集型任务(如网络请求)适合使用异步编程(如`asyncio`),以利用等待时间执行其他任务,提高效率。CPU密集型任务(如计算)则推荐使用多进程(如`multiprocessing`),绕过GIL限制,利用多核CPU。正确选择并发策略能优化应用性能。
71 2
|
4月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之在Flink算子内部使用异步IO可以通过什么办法实现
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。