Python爬虫:scrapy框架log日志设置

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: Python爬虫:scrapy框架log日志设置

Scrapy提供5层logging级别:

1. CRITICAL - 严重错误
2. ERROR - 一般错误
3. WARNING - 警告信息
4. INFO - 一般信息
5. DEBUG - 调试信息

logging设置

通过在setting.py中进行以下设置可以被用来配置logging

以下配置均未默认值

# 是否启用日志
LOG_ENABLED=True
# 日志使用的编码
LOG_ENCODING='utf-8'
# 日志文件(文件名)
LOG_FILE=None
# 日志格式
LOG_FORMAT='%(asctime)s [%(name)s] %(levelname)s: %(message)s'
# 日志时间格式
LOG_DATEFORMAT='%Y-%m-%d %H:%M:%S'
# 日志级别 CRITICAL, ERROR, WARNING, INFO, DEBUG
LOG_LEVEL='DEBUG'
# 如果等于True,所有的标准输出(包括错误)都会重定向到日志,例如:print('hello')
LOG_STDOUT=False
# 如果等于True,日志仅仅包含根路径,False显示日志输出组件
LOG_SHORT_NAMES=False

配置示例

# setting.py
from datetime import datetime
# 文件及路径,log目录需要先建好
today = datetime.now()
log_file_path = "log/scrapy_{}_{}_{}.log".format(today.year, today.month, today.day)
# 日志输出
LOG_LEVEL = 'DEBUG'
LOG_FILE = log_file_path

使用

import logging
logger = logging.getLogger(__name__)
logger.warning("This is a warning")

或者

import scrapy
class MySpider(scrapy.Spider):
    name = 'myspider'
    start_urls = ['https://scrapinghub.com']
    def parse(self, response):
        self.logger.info('Parse function called on %s', response.url)

参考

  1. https://docs.scrapy.org/en/latest/topics/settings.html#log-enabled
  2. https://docs.scrapy.org/en/latest/topics/logging.html
相关实践学习
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
【涂鸦即艺术】基于云应用开发平台CAP部署AI实时生图绘板
相关文章
|
2月前
|
存储 Java 数据处理
(numpy)Python做数据处理必备框架!(一):认识numpy;从概念层面开始学习ndarray数组:形状、数组转置、数值范围、矩阵...
Numpy是什么? numpy是Python中科学计算的基础包。 它是一个Python库,提供多维数组对象、各种派生对象(例如掩码数组和矩阵)以及用于对数组进行快速操作的各种方法,包括数学、逻辑、形状操作、排序、选择、I/0 、离散傅里叶变换、基本线性代数、基本统计运算、随机模拟等等。 Numpy能做什么? numpy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组 用于对整组数据进行快速运算的标准数学函数(无需编写循环)。 用于读写磁盘数据的工具以及用于操作内存映射文件的工具。 线性代数、随机数生成以及傅里叶变换功能。 用于集成由C、C++
310 1
|
2月前
|
监控 安全 程序员
Python日志模块配置:从print到logging的优雅升级指南
从 `print` 到 `logging` 是 Python 开发的必经之路。`print` 调试简单却难维护,日志混乱、无法分级、缺乏上下文;而 `logging` 支持级别控制、多输出、结构化记录,助力项目可维护性升级。本文详解痛点、优势、迁移方案与最佳实践,助你构建专业日志系统,让程序“有记忆”。
230 0
|
2月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
244 0
|
2月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
394 0
|
2月前
|
Java 数据处理 索引
(numpy)Python做数据处理必备框架!(二):ndarray切片的使用与运算;常见的ndarray函数:平方根、正余弦、自然对数、指数、幂等运算;统计函数:方差、均值、极差;比较函数...
ndarray切片 索引从0开始 索引/切片类型 描述/用法 基本索引 通过整数索引直接访问元素。 行/列切片 使用冒号:切片语法选择行或列的子集 连续切片 从起始索引到结束索引按步长切片 使用slice函数 通过slice(start,stop,strp)定义切片规则 布尔索引 通过布尔条件筛选满足条件的元素。支持逻辑运算符 &、|。
162 0
|
5月前
|
机器学习/深度学习 算法 量子技术
GQNN框架:让Python开发者轻松构建量子神经网络
为降低量子神经网络的研发门槛并提升其实用性,本文介绍一个名为GQNN(Generalized Quantum Neural Network)的Python开发框架。
115 4
GQNN框架:让Python开发者轻松构建量子神经网络
|
5月前
|
JSON 监控 BI
拼多多批量下单工具,拼多多买家批量下单软件,低价下单python框架分享
使用Selenium实现自动化操作流程多线程订单处理提升效率
|
5月前
|
机器人 数据安全/隐私保护 Python
企业微信自动回复软件,企业微信自动回复机器人,python框架分享
企业微信机器人包含完整的消息处理流程,支持文本消息自动回复、事件处理、消息加密解密等功能
|
3月前
|
机器学习/深度学习 算法 PyTorch
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
【Pytorch框架搭建神经网络】基于DQN算法、优先级采样的DQN算法、DQN + 人工势场的避障控制研究(Python代码实现)
|
3月前
|
机器学习/深度学习 算法 PyTorch
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
【DQN实现避障控制】使用Pytorch框架搭建神经网络,基于DQN算法、优先级采样的DQN算法、DQN + 人工势场实现避障控制研究(Matlab、Python实现)
149 0

推荐镜像

更多