ML之sklearn:sklearn.linear_mode中的LogisticRegression函数的简介、使用方法之详细攻略(二)

简介: ML之sklearn:sklearn.linear_mode中的LogisticRegression函数的简介、使用方法之详细攻略

笔记

    -----

底层的C实现使用一个随机数生成器来选择适合模型的特性。因此,对于相同的输入数据,结果略有不同的情况并不少见。如果出现这种情况,尝试使用较小的tol参数。


在某些情况下,Predict输出可能与独立liblinear的输出不匹配。参见:ref:“区别于liblinear <liblinear_differences>”。</liblinear_differences>

   References

   ----------

 

   L-BFGS-B -- Software for Large-scale Bound-constrained Optimization Ciyou Zhu, Richard Byrd, Jorge Nocedal and Jose Luis Morales. http://users.iems.northwestern.edu/~nocedal/lbfgsb.html

 

   LIBLINEAR -- A Library for Large Linear Classification

  https://www.csie.ntu.edu.tw/~cjlin/liblinear/

 

   SAG -- Mark Schmidt, Nicolas Le Roux, and Francis Bach Minimizing Finite Sums with the Stochastic Average Gradient

  https://hal.inria.fr/hal-00860051/document

 

   SAGA -- Defazio, A., Bach F. & Lacoste-Julien S. (2014).

   SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives

  https://arxiv.org/abs/1407.0202

 

   Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate  descent

   methods for logistic regression and maximum entropy models.  Machine Learning 85(1-2):41-75.

  https://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf 引用

---------


Ciyou Zhu, Richard Byrd, Jorge Nocedal和Jose Luis moral. http://users.iems.northwestern.edu/~ Nocedal /lbfgsb.html


LIBLINEAR——一个大型线性分类的图书馆

https://www.csie.ntu.edu.tw/ cjlin / liblinear /


SAG——Mark Schmidt, Nicolas Le Roux和Francis Bach用随机平均梯度最小化有限和

https://hal.inria.fr/hal-00860051/document


佐贺—德法齐奥,巴赫F. &拉科斯特-朱利安S.(2014)。

一个支持非强凸复合目标的快速增量梯度方法

https://arxiv.org/abs/1407.0202


俞香福、黄方兰、林志仁(2011)。双坐标下降

逻辑回归和最大熵模型的方法。机器学习85 (1 - 2):41 - 75。

https://www.csie.ntu.edu.tw/ cjlin /论文/ maxent_dual.pdf

   Examples

   --------

   >>> from sklearn.datasets import load_iris

   >>> from sklearn.linear_model import LogisticRegression

   >>> X, y = load_iris(return_X_y=True)

   >>> clf = LogisticRegression(random_state=0).fit(X, y)

   >>> clf.predict(X[:2, :])

   array([0, 0])

   >>> clf.predict_proba(X[:2, :])

   array([[9.8...e-01, 1.8...e-02, 1.4...e-08],

   [9.7...e-01, 2.8...e-02, ...e-08]])

   >>> clf.score(X, y)

   0.97...

   """

   @_deprecate_positional_args  

   def __init__(self, penalty='l2', *, dual=False, tol=1e-4, C=1.0,

       fit_intercept=True, intercept_scaling=1, class_weight=None,

       random_state=None, solver='lbfgs', max_iter=100,

       multi_class='auto', verbose=0, warm_start=False, n_jobs=None,

       l1_ratio=None):

       self.penalty = penalty

       self.dual = dual

       self.tol = tol

       self.C = C

       self.fit_intercept = fit_intercept

       self.intercept_scaling = intercept_scaling

       self.class_weight = class_weight

       self.random_state = random_state

       self.solver = solver

       self.max_iter = max_iter

       self.multi_class = multi_class

       self.verbose = verbose

       self.warm_start = warm_start

       self.n_jobs = n_jobs

       self.l1_ratio = l1_ratio

 

   def fit(self, X, y, sample_weight=None):

       """

       Fit the model according to the given training data.

       Parameters

       ----------

       X : {array-like, sparse matrix} of shape (n_samples, n_features)

           Training vector, where n_samples is the number of samples and

           n_features is the number of features.

       y : array-like of shape (n_samples,)

           Target vector relative to X.

       sample_weight : array-like of shape (n_samples,) default=None

           Array of weights that are assigned to individual samples.

           If not provided, then each sample is given unit weight.

           .. versionadded:: 0.17

              *sample_weight* support to LogisticRegression.

       Returns

       -------

       self

           Fitted estimator.

       Notes

       -----

       The SAGA solver supports both float64 and float32 bit arrays.

       """

       solver = _check_solver(self.solver, self.penalty, self.dual)

       if not isinstance(self.C, numbers.Number) or self.C < 0:

           raise ValueError(

               "Penalty term must be positive; got (C=%r)" % self.C)

       if self.penalty == 'elasticnet':

           if (not isinstance(self.l1_ratio, numbers.Number) or

               self.l1_ratio < 0 or self.l1_ratio > 1):

               raise ValueError(

                   "l1_ratio must be between 0 and 1;"

                   " got (l1_ratio=%r)" %

                   self.l1_ratio)

       elif self.l1_ratio is not None:

           warnings.warn("l1_ratio parameter is only used when penalty is "

               "'elasticnet'. Got "

               "(penalty={})".

               format(self.penalty))

       if self.penalty == 'none':

           if self.C != 1.0: # default values

               warnings.warn("Setting penalty='none' will ignore the C and

                l1_ratio "

                   "parameters")

                   # Note that check for l1_ratio is done right above

           C_ = np.inf

           penalty = 'l2'

       else:

           C_ = self.C

           penalty = self.penalty

       if not isinstance(self.max_iter, numbers.Number) or self.max_iter < 0:

           raise ValueError("Maximum number of iteration must be positive;"

               " got (max_iter=%r)" %

               self.max_iter)

       if not isinstance(self.tol, numbers.Number) or self.tol < 0:

           raise ValueError("Tolerance for stopping criteria must be "

               "positive; got (tol=%r)" %

               self.tol)

       if solver == 'lbfgs':

           _dtype = np.float64

       else:

           _dtype = [np.float64, np.float32]

       X, y = self._validate_data(X, y, accept_sparse='csr', dtype=_dtype,

        order="C",

           accept_large_sparse=solver != 'liblinear')

       check_classification_targets(y)

       self.classes_ = np.unique(y)

       multi_class = _check_multi_class(self.multi_class, solver,

           len(self.classes_))

       if solver == 'liblinear':

           if effective_n_jobs(self.n_jobs) != 1:

               warnings.warn("'n_jobs' > 1 does not have any effect when"

                   " 'solver' is set to 'liblinear'. Got 'n_jobs'"

                   " = {}.".

                   format(effective_n_jobs(self.n_jobs)))

           self.coef_, self.intercept_, n_iter_ = _fit_liblinear(X, y, self.C, self.

            fit_intercept, self.intercept_scaling, self.class_weight, self.penalty, self.

            dual, self.verbose, self.max_iter, self.tol, self.random_state,

               sample_weight=sample_weight)

           self.n_iter_ = np.array([n_iter_])

           return self

       if solver in ['sag', 'saga']:

           max_squared_sum = row_norms(X, squared=True).max()

       else:

           max_squared_sum = None

       n_classes = len(self.classes_)

       classes_ = self.classes_

       if n_classes < 2:

           raise ValueError(

               "This solver needs samples of at least 2 classes"

               " in the data, but the data contains only one"

               " class: %r" %

               classes_[0])

       if len(self.classes_) == 2:

           n_classes = 1

           classes_ = classes_[1:]

       if self.warm_start:

           warm_start_coef = getattr(self, 'coef_', None)

       else:

           warm_start_coef = None

       if warm_start_coef is not None and self.fit_intercept:

           warm_start_coef = np.append(warm_start_coef,

               self.intercept_[:np.newaxis],

               axis=1)

       self.coef_ = list()

       self.intercept_ = np.zeros(n_classes)

       # Hack so that we iterate only once for the multinomial case.

       if multi_class == 'multinomial':

           classes_ = [None]

           warm_start_coef = [warm_start_coef]

       if warm_start_coef is None:

           warm_start_coef = [None] * n_classes

       path_func = delayed(_logistic_regression_path)

       # The SAG solver releases the GIL so it's more efficient to use

       # threads for this solver.

       if solver in ['sag', 'saga']:

           prefer = 'threads'

       else:

           prefer = 'processes'

       fold_coefs_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose, **

           _joblib_parallel_args(prefer=prefer))(

           path_func(X, y, pos_class=class_, Cs=[C_],

               l1_ratio=self.l1_ratio, fit_intercept=self.fit_intercept,

               tol=self.tol, verbose=self.verbose, solver=solver,

               multi_class=multi_class, max_iter=self.max_iter,

               class_weight=self.class_weight, check_input=False,

               random_state=self.random_state, coef=warm_start_coef_,

               penalty=penalty, max_squared_sum=max_squared_sum,

               sample_weight=sample_weight) for

           (class_, warm_start_coef_) in zip(classes_, warm_start_coef))

       fold_coefs_, _, n_iter_ = zip(*fold_coefs_)

       self.n_iter_ = np.asarray(n_iter_, dtype=np.int32)[:0]

       n_features = X.shape[1]

       if multi_class == 'multinomial':

           self.coef_ = fold_coefs_[0][0]

       else:

           self.coef_ = np.asarray(fold_coefs_)

           self.coef_ = self.coef_.reshape(n_classes, n_features +

               int(self.fit_intercept))

       if self.fit_intercept:

           self.intercept_ = self.coef_[:-1]

           self.coef_ = self.coef_[::-1]

       return self

 

   def predict_proba(self, X):

       """

       Probability estimates.

       The returned estimates for all classes are ordered by the label of classes.  For a multi_class problem, if multi_class is set to be "multinomial"  the softmax function is used to find the predicted probability of  each class.

       Else use a one-vs-rest approach, i.e calculate the probability of each class assuming it to be positive using the logistic function.  and normalize these values across all the classes.

       Parameters

       ----------

       X : array-like of shape (n_samples, n_features)

           Vector to be scored, where `n_samples` is the number of samples  and `n_features` is the number of features.

       Returns

       -------

       T : array-like of shape (n_samples, n_classes)

           Returns the probability of the sample for each class in the model, where classes are ordered as they are in ``self.classes_``.

       """

       check_is_fitted(self)

       ovr = self.multi_class in ["ovr", "warn"] or (self.multi_class == 'auto'

        and (self.classes_.size <= 2 or

               self.solver == 'liblinear'))

       if ovr:

           return super()._predict_proba_lr(X)

       else:

           decision = self.decision_function(X)

           if decision.ndim == 1:

               # Workaround for multi_class="multinomial" and binary

                outcomes

               # which requires softmax prediction with only a 1D decision.

               decision_2d = np.c_[-decisiondecision]

           else:

               decision_2d = decision

           return softmax(decision_2d, copy=False)

 

   def predict_log_proba(self, X):

       """

       Predict logarithm of probability estimates.

       The returned estimates for all classes are ordered by the label of classes.

       Parameters

       ----------

       X : array-like of shape (n_samples, n_features)

           Vector to be scored, where `n_samples` is the number of samples   and  `n_features` is the number of features.

       Returns

       -------

       T : array-like of shape (n_samples, n_classes)

           Returns the log-probability of the sample for each class in the  model, where classes are ordered as they are in ``self.classes_``.

       """

       return np.log(self.predict_proba(X))

概率的估计。

所有类返回的估计值都按照类的标签排序。对于一个多类问题,将多类设为“多项式”,利用softmax函数求出每一类的预测概率。

否则使用one vs-rest方法,i。计算概率的每一类假设它是正使用logistic函数。并在所有类中规范化这些值。



相关文章
|
机器学习/深度学习 数据可视化 PyTorch
visdom的用法,详细的介绍torch相关案例
Visdom是一款用于创建交互式可视化的Python库,通常在深度学习中用于监视训练进度和可视化结果。在PyTorch中,可以使用Visdom轻松地创建图形和可视化数据。在这个例子中,我们首先使用 torchvision.utils.make_grid 方法加载了一批随机生成的图像,并使用 visdom.image 方法将其可视化。然后,我们创建了一些随机的二维数据,并使用 visdom.scatter 方法将其可视化为散点图。 需要注意的是,Visdom的Web界面支持实时更新,这意味着在训练模型或执行其他任务时,可以使用Visdom实时监视进度和结果。
266 0
|
数据可视化 Python
sklearn之XGBModel:XGBModel之feature_importances_、plot_importance的简介、使用方法之详细攻略
sklearn之XGBModel:XGBModel之feature_importances_、plot_importance的简介、使用方法之详细攻略
sklearn:sklearn.preprocessing中的Standardization、Scaling、 Normalization简介、使用方法之详细攻略
sklearn:sklearn.preprocessing中的Standardization、Scaling、 Normalization简介、使用方法之详细攻略
sklearn:sklearn.preprocessing中的Standardization、Scaling、 Normalization简介、使用方法之详细攻略
|
机器学习/深度学习 存储 缓存
ML之sklearn:sklearn的make_pipeline函数、RobustScaler函数、KFold函数、cross_val_score函数的代码解释、使用方法之详细攻略
ML之sklearn:sklearn的make_pipeline函数、RobustScaler函数、KFold函数、cross_val_score函数的代码解释、使用方法之详细攻略
|
存储 计算机视觉 索引
sklearn:sklearn.GridSearchCV函数的简介、使用方法之详细攻略
sklearn:sklearn.GridSearchCV函数的简介、使用方法之详细攻略
|
机器学习/深度学习 数据挖掘 索引
ML之sklearn:sklearn.metrics中常用的函数参数(比如confusion_matrix等 )解释及其用法说明之详细攻略
ML之sklearn:sklearn.metrics中常用的函数参数(比如confusion_matrix等 )解释及其用法说明之详细攻略
|
计算机视觉 索引 Python
ML之sklearn:sklearn库中的ShuffleSplit()函数和StratifiedShuffleSplit()函数的讲解
ML之sklearn:sklearn库中的ShuffleSplit()函数和StratifiedShuffleSplit()函数的讲解
sklearn之pipeline:sklearn.pipeline函数使用及其参数解释之详细攻略
sklearn之pipeline:sklearn.pipeline函数使用及其参数解释之详细攻略
|
机器学习/深度学习 算法 大数据
ML之sklearn:sklearn.linear_mode中的LogisticRegression函数的简介、使用方法之详细攻略(一)
ML之sklearn:sklearn.linear_mode中的LogisticRegression函数的简介、使用方法之详细攻略

相关课程

更多